Skip to main content
Log in

High-Sensitivity Immunofluorescence Staining: A Comparison of the Liposome Procedure and the FASER Technique on mGR Detection

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Flow cytometry has become a widely-used and powerful tool for the characterization of cells according to their expression of specific proteins. However, sensitivity of this method is still limited since conventionally labeled antibodies can be conjugated with at maximum 1–10 dye molecules. This fact resulted in the need to develop new techniques in order to identify molecules which are expressed in very low but functionally relevant amounts. In the past, we have successfully used a liposome-based high-sensitivity immunofluorescence technique to measure the expression of low abundant membrane bound glucocorticoid receptors (mGR) on different cell types. The use of this technique allows the detection of as few as 50–100 antigen molecules per cell which is due to a 100-fold to 1000-fold increase in fluorescence signal intensity compared with conventional methods. The higher sensitivity is achieved since thousands of dye molecules can be enclosed in liposomes. Another modern high-sensitivity immunofluorescence staining method is the purchasable Fluorescence Amplification by Sequential Employment of Reagents (FASER) procedure. Here, we aimed at comparing sensitivity and specificity of these two techniques for the detection of the mGR. Our data demonstrate the FASER technique to be more sensitive and also more specific for the detection of mGR as compared to the liposome technique. However, both methods have advantages and disadvantages which are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scheffold A, Miltenyi S, Radbruch A (1995) Magnetofluorescent liposomes for increased sensitivity of immunofluorescence. Immunotechnology 1(2):127–137

    Article  PubMed  CAS  Google Scholar 

  2. Weil GJ, Chused TM (1981) Eosinophil autofluorescence and its use in isolation and analysis of human eosinophils using flow microfluorometry. Blood 57(6):1099–1104

    PubMed  CAS  Google Scholar 

  3. Steinkamp JA, Stewart CC (1986) Dual-laser, differential fluorescence correction method for reducing cellular background autofluorescence. Cytometry 7(6):566–574. doi:10.1002/cyto.990070611

    Article  PubMed  CAS  Google Scholar 

  4. Craig W, Kay R, Cutler RL, Lansdorp PM (1993) Expression of Thy-1 on human hematopoietic progenitor cells. J Exp Med 177(5):1331–1342

    Article  PubMed  CAS  Google Scholar 

  5. Scheffold A, Kern F (2000) Recent developments in flow cytometry. J Clin Immunol 20(6):400–407

    Article  PubMed  CAS  Google Scholar 

  6. Scheffold A, Assenmacher M, Reiners-Schramm L, Lauster R, Radbruch A (2000) High-sensitivity immunofluorescence for detection of the pro- and anti-inflammatory cytokines gamma interferon and interleukin-10 on the surface of cytokine-secreting cells. Nat Med 6(1):107–110. doi:10.1038/71441

    Article  PubMed  CAS  Google Scholar 

  7. Assenmacher M, Scheffold A, Schmitz J, Segura Checa JA, Miltenyi S, Radbruch A (1996) Specific expression of surface interferon-gamma on interferon-gamma producing T cells from mouse and man. Eur J Immunol 26(1):263–267. doi:10.1002/eji.1830260141

    Article  PubMed  CAS  Google Scholar 

  8. Wang YH, Stephan RP, Scheffold A, Kunkel D, Karasuyama H, Radbruch A, Cooper MD (2002) Differential surrogate light chain expression governs B-cell differentiation. Blood 99(7):2459–2467

    Article  PubMed  CAS  Google Scholar 

  9. Kunkel D, Kirchhoff D, Volkmer-Engert R, Radbruch A, Scheffold A (2003) Sensitive visualization of peptide presentation in vitro and ex vivo. Cytometry A 54(1):19–26. doi:10.1002/cyto.a.10055

    Article  PubMed  Google Scholar 

  10. Kunkel D, Kirchhoff D, Nishikawa S, Radbruch A, Scheffold A (2003) Visualization of peptide presentation following oral application of antigen in normal and Peyer’s patches-deficient mice. Eur J Immunol 33(5):1292–1301. doi:10.1002/eji.200323383

    Article  PubMed  CAS  Google Scholar 

  11. Doyle C, Strominger JL (1987) Interaction between CD4 and class II MHC molecules mediates cell adhesion. Nature 330(6145):256–259. doi:10.1038/330256a0

    Article  PubMed  CAS  Google Scholar 

  12. Harding CV, Unanue ER (1990) Cellular mechanisms of antigen processing and the function of class I and II major histocompatibility complex molecules. Cell Regul 1(7):499–509

    PubMed  CAS  Google Scholar 

  13. Babbitt BP, Allen PM, Matsueda G, Haber E, Unanue ER (1985) Binding of immunogenic peptides to Ia histocompatibility molecules. Nature 317(6035):359–361

    Article  PubMed  CAS  Google Scholar 

  14. Gay D, Buus S, Pasternak J, Kappler J, Marrack P (1988) The T-cell accessory molecule CD4 recognizes a monomorphic determinant on isolated Ia. Proc Natl Acad Sci U S A 85(15):5629–5633

    Article  PubMed  CAS  Google Scholar 

  15. Unanue ER, Cerottini JC (1989) Antigen presentation. FASEB J 3(13):2496–2502

    PubMed  CAS  Google Scholar 

  16. Unanue ER, Harding CV, Luescher IF, Roof RW (1989) Antigen-binding function of class II MHC molecules. Cold Spring Harb Symp Quant Biol 54(Pt 1):383–392

    Article  PubMed  CAS  Google Scholar 

  17. Zhong G, ReiseSousa C, Germain RN (1997) Production, specificity, and functionality of monoclonal antibodies to specific peptide-major histocompatibility complex class II complexes formed by processing of exogenous protein. Proc Natl Acad Sci U S A 94(25):13856–13861

    Article  PubMed  CAS  Google Scholar 

  18. Dadaglio G, Nelson CA, Deck MB, Petzold SJ, Unanue ER (1997) Characterization and quantitation of peptide-MHC complexes produced from hen egg lysozyme using a monoclonal antibody. Immunity 6(6):727–738

    Article  PubMed  CAS  Google Scholar 

  19. Krogsgaard M, Wucherpfennig KW, Cannella B, Hansen BE, Svejgaard A, Pyrdol J, Ditzel H, Raine C, Engberg J, Fugger L (2000) Visualization of myelin basic protein (MBP) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2-MBP 85–99 complex. J Exp Med 191(8):1395–1412

    Article  PubMed  CAS  Google Scholar 

  20. Porgador A, Yewdell JW, Deng Y, Bennink JR, Germain RN (1997) Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 6(6):715–726

    Article  PubMed  CAS  Google Scholar 

  21. Harding CV, Unanue ER (1990) Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature 346(6284):574–576. doi:10.1038/346574a0

    Article  PubMed  CAS  Google Scholar 

  22. Demotz S, Grey HM, Sette A (1990) The minimal number of class II MHC-antigen complexes needed for T cell activation. Science 249(4972):1028–1030

    Article  PubMed  CAS  Google Scholar 

  23. Romagnani P, Annunziato F, Liotta F, Lazzeri E, Mazzinghi B, Frosali F, Cosmi L, Maggi L, Lasagni L, Scheffold A, Kruger M, Dimmeler S, Marra F, Gensini G, Maggi E, Romagnani S (2005) CD14 + CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circ Res 97(4):314–322. doi:10.1161/01.RES.0000177670.72216.9b

    Article  PubMed  CAS  Google Scholar 

  24. Bartholome B, Spies CM, Gaber T, Schuchmann S, Berki T, Kunkel D, Bienert M, Radbruch A, Burmester GR, Lauster R, Scheffold A, Buttgereit F (2004) Membrane glucocorticoid receptors (mGCR) are expressed in normal human peripheral blood mononuclear cells and up-regulated after in vitro stimulation and in patients with rheumatoid arthritis. FASEB J 18(1):70–80

    Article  PubMed  CAS  Google Scholar 

  25. Song IH, Buttgereit F (2006) Non-genomic glucocorticoid effects to provide the basis for new drug developments. Mol Cell Endocrinol 246(1–2):142–146

    Article  PubMed  CAS  Google Scholar 

  26. Buttgereit F, Straub RH, Wehling M, Burmester GR (2004) Glucocorticoids in the treatment of rheumatic diseases: an update on the mechanisms of action. Arthritis Rheum 50(11):3408–3417

    Article  PubMed  CAS  Google Scholar 

  27. Tryc AB, Spies CM, Schneider U, Kunkel D, Berki T, Sieper J, Burmester GR, Radbruch A, Scheffold A, Buttgereit F (2006) Membrane glucocorticoid receptor expression on peripheral blood mononuclear cells in patients with ankylosing spondylitis. J Rheumatol 33(11):2249–2253

    PubMed  Google Scholar 

  28. Spies CM, Schaumann DH, Berki T, Mayer K, Jakstadt M, Huscher D, Wunder C, Burmester GR, Radbruch A, Lauster R, Scheffold A, Buttgereit F (2006) Membrane glucocorticoid receptors are down regulated by glucocorticoids in patients with systemic lupus erythematosus and use a caveolin-1-independent expression pathway. Ann Rheum Dis 65(9):1139–1146

    Article  PubMed  CAS  Google Scholar 

  29. Spies CM, Bartholome B, Berki T, Burmester GR, Radbruch A, Scheffold A, Buttgereit F (2007) Membrane glucocorticoid receptors (mGCR) on monocytes are up-regulated after vaccination. Rheumatol (Oxford) 46(2):364–365. doi:10.1093/rheumatology/kel404

    Article  CAS  Google Scholar 

  30. Strehl C, Gaber T, Lowenberg M, Hommes DW, Verhaar AP, Schellmann S, Hahne M, Fangradt M, Wagegg M, Hoff P, Scheffold A, Spies CM, Burmester GR, Buttgereit F (2011) Membrane-bound glucocorticoid receptor. Arthritis Rheum. doi:10.1002/art.30637

  31. Berki T, Kumanovics G, Kumanovics A, Falus A, Ujhelyi E, Nemeth P (1998) Production and flow cytometric application of a monoclonal anti-glucocorticoid receptor antibody. J Immunol Methods 214(1–2):19–27

    Article  PubMed  CAS  Google Scholar 

  32. Sackey FN, Watson CS, Gametchu B (1997) Cell cycle regulation of membrane glucocorticoid receptor in CCRF-CEM human ALL cells: correlation to apoptosis. Am J Physiol 273(3 Pt 1):E571–E583

    PubMed  CAS  Google Scholar 

  33. Lowenberg M, Verhaar AP, van den Brink GR, Hommes DW (2007) Glucocorticoid signaling: a nongenomic mechanism for T-cell immunosuppression. Trends Mol Med 13(4):158–163. doi:10.1016/j.molmed.2007.02.001

    Article  PubMed  Google Scholar 

  34. Lowenberg M, Tuynman J, Bilderbeek J, Gaber T, Buttgereit F, van Deventer S, Peppelenbosch M, Hommes D (2005) Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn. Blood 106(5):1703–1710

    Article  PubMed  Google Scholar 

  35. Lowenberg M, Verhaar AP, Bilderbeek J, Marle J, Buttgereit F, Peppelenbosch MP, van Deventer SJ, Hommes DW (2006) Glucocorticoids cause rapid dissociation of a T-cell-receptor-associated protein complex containing LCK and FYN. EMBO Rep 7(10):1023–1029

    Article  PubMed  Google Scholar 

  36. Boldizsar F, Talaber G, Szabo M, Bartis D, Palinkas L, Nemeth P, Berki T (2010) Emerging pathways of non-genomic glucocorticoid (GC) signalling in T cells. Immunobiology 215(7):521–526. doi:10.1016/j.imbio.2009.10.003

    Article  PubMed  CAS  Google Scholar 

  37. Lowenberg M, Stahn C, Hommes DW, Buttgereit F (2007) Novel insights into mechanisms of glucocorticoid action and the development of new glucocorticoid receptor ligands. Steroids. doi:10.1016/j.steroids.2007.12.002

  38. Pelham HR (1991) Multiple targets for brefeldin A. Cell 67(3):449–451

    Article  PubMed  CAS  Google Scholar 

  39. Polic B, Kunkel D, Scheffold A, Rajewsky K (2001) How alpha beta T cells deal with induced TCR alpha ablation. Proc Natl Acad Sci U S A 98(15):8744–8749. doi:10.1073/pnas.141218898

    Article  PubMed  CAS  Google Scholar 

  40. Knieke K, Hoff H, Maszyna F, Kolar P, Schrage A, Hamann A, Debes GF, Brunner-Weinzierl MC (2009) CD152 (CTLA-4) determines CD4 T cell migration in vitro and in vivo. PLoS One 4(5):e5702. doi:10.1371/journal.pone.0005702

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Manuela Krüger for providing the liposomes, Miltenyi Biotec for producing the anti-Dig/anti-Bio matrix and Timea Berki for providing the anti-GR antibody.

Authors Contributions

All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published.

Competing Interest Statement

There are no competing interests.

Financial Support

This work was supported by grants from the Deutsche Forschungsgemeinschaft (Bu 1015/7-1) and from the Deutsche Sparkassenstiftung Medizin to FB. Contributions of Martin Hahne were made possible by DFG funding through the Berlin-Brandenburg School for Regenerative Therapies GSC 203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy Strehl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strehl, C., Gaber, T., Jakstadt, M. et al. High-Sensitivity Immunofluorescence Staining: A Comparison of the Liposome Procedure and the FASER Technique on mGR Detection. J Fluoresc 23, 509–518 (2013). https://doi.org/10.1007/s10895-013-1163-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1163-4

Keywords

Navigation