Skip to main content

Histochemistry in Advanced Cytometry: From Fluorochromes to Mass Probes

  • Protocol
  • First Online:
Histochemistry of Single Molecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2566))

  • 1424 Accesses

Abstract

For over half a century, fluorescence has been the milestone of most of the quantitative approaches in various fields from chemistry and biochemistry to microscopy. This latter also evolved into cytometry, thanks to the development of fluorescence techniques. The dyes of classical cytochemistry were replaced by fluorochromes, and the pioneer microphotometry was replaced by microfluorometry. The latter has great advantages in terms of simplicity, sensitivity, and accuracy. The extensive research and availability of new fluorochromes as well as the technological evolution contributed to the success of microfluorometry. The development of flow cytometry in the 1960s gave a giant boost to cell analysis and in particular to the clinical diagnostics. The synergy between flow cytometry and the subsequent development of monoclonal antibodies allowed the setup of multiparametric analytical panels that are today popular and irreplaceable in many clinical and research laboratories. Multiparametric analysis has required the application of an increasing number of fluorochromes, but their simultaneous use creates problems of mutual contamination, hence the need to develop new fluorescent probes. Semiconductor and nanotechnology research enabled the development of new probes called nanocrystals or quantum dots, which offered great advantages to the multiparametric analysis: in fact, thanks to their spectrofluorometric peculiarities, dozens of quantum dots may be simultaneously used without appreciable crosstalk between them. New analytical horizons in cytometry seem to be associated with a new concept of analysis that replaces fluorescence toward new markers with (non-radiative) isotopes of heavy metals. Thus, the mass flow cytometry was born, which seems to guarantee the simultaneous compensation-free analysis of up to 100 markers on a single sample aliquot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Franklin RE, Gosling RG (1953) Evidence for 2-chain helix in crystalline structure of sodium Deoxyribonucleate. Nature 172:156–157

    Article  CAS  PubMed  Google Scholar 

  2. Watson JD, Crick FH (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  3. Kasten FH (2003) Robert Feulgen and his histochemical reaction for DNA. Biotech Histochem 78:45–49

    Article  PubMed  Google Scholar 

  4. Böhm N, Sprenger E (1968) Fluorescence cytophotometry: a valuable method for the quantitative determination of nuclear Feulgen-DNA. Histochemie 16:100–118

    Article  PubMed  Google Scholar 

  5. Gil JE, Jotz MM (1976) Further observations on the chemistry of pararosaniline-Feulgen staining. Histochemistry 46:147–160

    Article  Google Scholar 

  6. Kjellstrand PTT (1977) Temperature and acid concentration in the search for optimum Feulgen hydrolysis conditions. J Histochem Cytochem 25:129–134

    Article  CAS  PubMed  Google Scholar 

  7. Chieco P, Derenzini M (1999) The Feulgen reaction 75 years on. Histochem Cell Biol 111:345–358

    Article  CAS  PubMed  Google Scholar 

  8. Vialli M, Reggiani M (1948) Dispositivo per lo studio colorimetrico e fotometrico di preparati microscopici. Boll Soc Med Chirur Pavia 62:299–301

    Google Scholar 

  9. Vialli M, Romanini G (1950) Dispositivi semplificati di istofotometria nel visibile. Boll Soc Ital Biol Sperim 26:1633

    CAS  Google Scholar 

  10. Vialli M, Perugini S (1954) Due nuovi modelli di apparecchiature istofotometriche. Riv Istoch Norm Pat 1(2):149–170

    Google Scholar 

  11. Deeley EM (1955) An integrating microdensitometer for biological cells. J Sci Instrum 31:263–267

    Article  Google Scholar 

  12. Benedetti PA, Viola-Magni MP (1966) A scanning integrating histophotometer. J Sci Instrum 43:141–143

    Article  CAS  PubMed  Google Scholar 

  13. Ploem JS (1967) The use of vertical illuminator with interchangeable dichroic mirrors for fluorescence microscopy with incident light. Z Wiss Mikrosk 68:129–142

    CAS  PubMed  Google Scholar 

  14. Prenna G, Mazzini G, Cova S (1974) Methodological and instrumentational aspects of cytofluorometry. Histochem J 6:259–278

    Article  CAS  PubMed  Google Scholar 

  15. Cova S, Prenna G, Mazzini G (1974) Digital microscpectrofluorometry by multichannel scaling and single photon detection. Histochem J 6:279–299

    Article  CAS  PubMed  Google Scholar 

  16. Prenna G, Leiva S, Mazzini G (1974) Quantitation of DNA by cytofluorometry of the conventional Feulgen reaction. Histochem J 6:467–489

    Article  CAS  PubMed  Google Scholar 

  17. Kamentsky LA, Melamed MR, Derman H (1969) Spectrophotometer: new instrument for ultrarapid cell analysis. Science 150:630–631

    Article  Google Scholar 

  18. Van Dilla MA, Trujillo TT, Mullaney PF, Coulter JR (1969) Cell microfluorometry: a method for rapid fluorescence measurement. Science 163:1213

    Article  PubMed  Google Scholar 

  19. Dittrich W, Göhde W (1969) Impulsfluorometrie bei einzelzellen in suspension. Z Naturforsch 24b:360–361

    Article  Google Scholar 

  20. Göhde W, Dittrich W (1970) Simultane Impulsfluorimetrie des DNS und Proteingehaltes von Tumorzellen. Z Anal Chem 352:328–330

    Article  Google Scholar 

  21. Ormerod MG (1990) Flow cytometry: a practical approach. IRL Press, Oxford/New York/Tokyo

    Google Scholar 

  22. Melamed MR, Lindmo T, Mendelsohn ML (1991) Flow cytometry and sorting. Wiley-Liss, New York

    Google Scholar 

  23. Laerum OD, Farsund T (1981) Clinical applications of flow cytometry: a review. Cytometry 2:1–13

    Article  CAS  PubMed  Google Scholar 

  24. Robinson JP (1993) Handbook of flow cytometry methods. Wiley-Liss, New York

    Google Scholar 

  25. Shapiro HM (2005) Practical flow cytometry, 4th edn. Alan R Liss Inc, New York

    Google Scholar 

  26. Prenna G, De Paoli AM (I964) Derivati tiazolici come reagenti tipo Schiff fluorescenti. Rend Ist Lomb Sc Lett B 98:267–273

    Google Scholar 

  27. Prenna G, Bianchi UA (1964) Reazioni di Feulgen fluorescenti e loro possibilità citofluorometriche quantitative. 5) Citofotometria quantitativa in fluorescenza ed in assorbimento della reazione di Feulgen eseguita con acriflavina-SO2. Riv Istoch Norm Pat 10:667–676

    Google Scholar 

  28. Prenna G, De Paoli AM (1968) Impiego del Rivanol come reagente tipo Schiff fluorescente nella reazione di Feulgen. Riv Istoch Norm Pat 14:169–170

    Google Scholar 

  29. Trujillo TT, Van Dilla MA (1972) Adaptation of the fluorescent Feulgen reaction to cells in suspension for flow microfluorometry. Acta Cytol 16:26–30

    CAS  PubMed  Google Scholar 

  30. Mazzini G, Giordano P (1980) Effects of some solvents on the fluorescence intensity of phenantridinic derivatives-DNA complexes: flow cytofluorometric application. In: Laerum OD, Lindmo T, Thorud E (eds) Flow cytometry IV. Universitetsforlaget, Bergen/Oslo/Trondheim

    Google Scholar 

  31. Mazzini G, Giordano P, Riccardi A, Montecucco CM (1980) Biological significance of flow cytometric application of phenantridinic dyes at low concentration. Basic Appl Histochem 24:264

    Google Scholar 

  32. Mazzini G, Giordano PA (1981) Flow cytometry: a methodologic approach for fast quantitative cytochemical measurements and its use for the study of the chromatin structure. Basic Appl Histochem 25:303

    CAS  PubMed  Google Scholar 

  33. Crissman HA, Steinkamp JA (1973) Rapid simultaneous measurement of DNA, protein, and cell volume in single cells from large mammalian cell populations. J Cell Biol 59:766–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krishan A (1975) Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol 66:188–193

    Article  CAS  PubMed  Google Scholar 

  35. Fried J, Perez AG, Clarkson BD (1976) Flow cytofluorometric analysis of cell cycle distributions using propidium iodide. Properties of the method and mathematical analysis of the data. J Cell Biol 71:172–181

    Article  CAS  PubMed  Google Scholar 

  36. Giordano P, Mazzini G, Riccardi A, Montecucco CM, Ucci G, Danova M (1985) Propidium iodide staining of cytoautoradiographic preparations for the simultaneous determination of DNA content and grain count. Histochem J 17(11):1259–1270

    Article  CAS  PubMed  Google Scholar 

  37. Mazzini G, Giordano P, Montecucco CM, Riccardi A (1980) A rapid cytofluorometric method for quantitative DNA determination on fixed smears. Histochem J 12:153–168

    Article  CAS  PubMed  Google Scholar 

  38. Rigler R Jr (1966) Microfluorometric characterization of intracellular nucleic acids and nucleo-proteins by Acridine Orange. Acta Physiol Scand 67(267):1–122

    Google Scholar 

  39. Darzynkiewicz Z (1979) Acridine orange as a molecular probe in studies of nucleic acids. In: Melamed MR, Mullaney PF, Mendelsohn (eds) Flow cytometry and sorting. Wiley, New York

    Google Scholar 

  40. Göhde W (1972) Automation of cytofluorometry by use of the impulsmicrophotometer. In: Thaer A, Sernetz M (eds) Fluorescence techniques in cell biology. Springer, New York

    Google Scholar 

  41. Latt SA, Stetten G (1976) Spectral studies on 33258 Hoechst and related bisbenzimidazole dyes useful for fluorescent detection of deoxyribonucleic acid synthesis. J Histochem Cytochem 24:24–33. https://doi.org/10.1177/24.1.943439

    Article  CAS  PubMed  Google Scholar 

  42. Ellwart JW, Dormer P (1990) Viability measurement using spectrum shift in Hoechst 33342 stained cells. Cytometry 11:239–243

    Article  CAS  PubMed  Google Scholar 

  43. Mazzini G, Ferrari C, Erba E (2003) Dual excitation multi-fluorescence flow cytometry for detailed analyses of viability and apoptotic cell transition. Eur J Histochem 47:289–298

    Article  CAS  PubMed  Google Scholar 

  44. Haugland RP, Larison KD (2002) Handbook of fluorescent probes and research chemicals, 8th edn. Molecular Probes, Inc., Eugene, OR, USA

    Google Scholar 

  45. Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A (2016) Flow cytometry: basic principles and applications. Crit Rev Biotechnol 14:1–14

    Google Scholar 

  46. Yamamoto K, Sekine T (1978) Fluorescent tracer method for protein SH groups. III. Use of N-(7-dimethylamino-4-methylcoumarinyl) maleimide as a tracer of cysteine-containing peptides. Anal Biochem 90(1):300–308. https://doi.org/10.1016/0003-2697(78)90034-9

    Article  CAS  PubMed  Google Scholar 

  47. Ogawa H, Taneda A, Kanaoka Y, Sekine T (1979) The histochemical distribution of protein bound sulfhydryl groups in human epidermis by the new staining method. J Histochem Cytochem 27(5):942–946. https://doi.org/10.1177/27.5.90070

    Article  CAS  PubMed  Google Scholar 

  48. Taneda A, Ogawa H, Hashimoto K (1980) The histochemical demonstration of protein-bound sulfhydryl groups and disulfide bonds in human hair by a new staining method (DACM staining). J Invest Dermatol 75(4):365–369. https://doi.org/10.1111/1523-1747.ep12531243

    Article  CAS  PubMed  Google Scholar 

  49. Pellicciari C, Hosokawa Y, Fukuda M, Manfredi Romanini MG (1983) Cytofluorometric study of nuclear sulphydryl and disulphide groups during sperm maturation in the mouse. J Reprod Fertil 68(2):371–376. https://doi.org/10.1530/jrf.0.0680371

    Article  CAS  PubMed  Google Scholar 

  50. Bottiroli G, Croce AC, Pellicciari C, Ramponi R (1994) Propidium iodide and the thiol-specific reagent DACM as a dye pair for fluorescence resonance energy transfer analysis: an application to mouse sperm chromatin. Cytometry 15(2):106–116. https://doi.org/10.1002/cyto.990150204

    Article  CAS  PubMed  Google Scholar 

  51. Mazzini G, Giordano PA, Pellicciari C, Costa A, Marchese G (1987) A double staining method for the cytometric quantitation of DNA and thiol groups. In: Burger G, Ploem JS, Goerttler K (eds) Clinical cytometry and histometry. Academic Press, pp 149–152

    Google Scholar 

  52. Bryant DA, Glazer AN, Eiserling FA (1976) Characterization and structural properties of the major biliproteins of Anabaena sp. Arch Microbiol 110:61–75

    Article  CAS  PubMed  Google Scholar 

  53. Oi VT, Glazer AN, Stryer L (1982) Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J Cell Biol 93:981–986

    Article  CAS  PubMed  Google Scholar 

  54. Kronick MN, Grossman PD (1983) Immunoassay techniques with fluorescent phycobiliprotein conjugates. Clin Chem 29(9):1582–1586

    Article  CAS  PubMed  Google Scholar 

  55. Telford WG, Moss MW, Morseman JP, Allnutt FC (2001) Cyanobacterial stabilized phycobilisomes as fluorochromes for extracellular antigen detection by flow cytometry. J Immunol Methods 254:13–30

    Article  CAS  PubMed  Google Scholar 

  56. Puzorjov A, Mccormick AJ (2020) Phycobiliproteins from extreme environments and their potential applications. J Exp Bot 71(13):3827–3842

    Article  CAS  PubMed  Google Scholar 

  57. Zembruski NCL, Nadine CL, Stache V, Weiss J (2012) 7-Aminoactinomycin D for apoptosis staining in flow cytometry. Anal Biochem 429(1):179–181. https://doi.org/10.1016/j.ab.2012.07.005

    Article  CAS  Google Scholar 

  58. Costa A, Mazzini G, Del Bino G, Silvestrini R (1981) DNA content and kinetic characteristics of non-Hodgkin’s lymphoma determined by flow cytometry and autoradiography. Cytometry 2(3):185–188. https://doi.org/10.1002/cyto.990020310

    Article  CAS  PubMed  Google Scholar 

  59. Zippel R, Martegani E, Vanoni M, Mazzini G, Alberghina L (1982) Cell cycle analysis in a human cell line (EUE cells). Cytometry 2(6):426–430. https://doi.org/10.1002/cyto.990020612

    Article  CAS  PubMed  Google Scholar 

  60. Danova M, Riccardi A, Gaetani P, Wilson GD, Mazzini G, Brugnatelli S et al (1988) Cell kinetics of human brain tumors: in vivo study with bromodeoxyuridine and flow cytometry. Eur J Cancer Clin Oncol 24(5):873–880

    Article  CAS  PubMed  Google Scholar 

  61. Riccardi A, Danova M, Wilson G, Ucci G, Dörmer P, Mazzini G et al (1988) Cell kinetics in human malignancies studied with in vivo administration of bromodeoxyuridine and flow cytometry. Cancer Res 48(21):6238–6245

    CAS  PubMed  Google Scholar 

  62. Riccardi A, Danova M, Dionigi P, Gaetani P, Cebrelli T, Butti G et al (1989) Cell kinetics in leukaemia and solid tumours studied with in vivo bromodeoxyuridine and flow cytometry. Br J Cancer 59(6):898–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Giordano M, Riccardi A, Danova M, Gobbi P, Riccardi A (1991) Cell proliferation of human leukemia and solid tumors studied with in vivo bromodeoxyuridine and flow cytometry. Cancer Detect Prev 15(5):391–396

    CAS  PubMed  Google Scholar 

  64. Giordano M, Danova M, Mazzini G, Gobbi P, Riccardi A (1993) Cell kinetics with in vivo: bromodeoxyuridine assay, proliferating cell nuclear antigen expression, and flow cytometric analysis. Prognostic significance in acute nonlymphoblastic leukemia. Cancer 71(9):2739–2745

    Article  CAS  PubMed  Google Scholar 

  65. Erba E, Giordano M, Danova M, Mazzini G, Ubezio P, Torri V et al (1994) Cell kinetics of human ovarian cancer with in vivo administration of bromodeoxyuridine. Ann Oncol 5(7):627–634

    Article  CAS  PubMed  Google Scholar 

  66. Mazzini G, Danova M, Ferrari C, Dionigi P, Riccardi A (1996) Cell proliferation and ploidy of human solid tumours: methodological experience with in vivo bromodeoxyuridine and DNA flow cytometry. Anal Cell Pathol 10(2):101–113

    CAS  PubMed  Google Scholar 

  67. Robinson JP, Roederer M (2015) History of science. Flow cytometry strikes gold. Science. https://doi.org/10.1126/science.aad6770

  68. Pellicciari C, Danova M, Giordano M, Conti A, Mazzini G, Wang E et al (1991) Expression of cell cycle related proteins proliferating cell nuclear antigen (PCNA) and statin during adaptation and de-adaptation of EUE cells to a hypertonic medium. Cell Prolif 24(5):469–479. https://doi.org/10.1111/j.1365-2184.1991.tb01175.x

    Article  CAS  PubMed  Google Scholar 

  69. Giordano M, Danova M, Riccardi A, Mazzini G (1989) Simultaneous detection of cellular ras p21 oncogene product and DNA content by two-parameter flow cytometry. Anticancer Res 9(3):799–803

    CAS  PubMed  Google Scholar 

  70. Danova M, Riccardi A, Mazzini G (1990) Cell cycle-related proteins and flow cytometry. Haematologica 75(3):252–264

    CAS  PubMed  Google Scholar 

  71. Danova M, Riccardi A, Ucci G, Luoni R, Giordano M, Mazzini G (1990) Ras oncogene expression and DNA content in plasma cell dyscrasias: a flow cytofluorimetric study. Br J Cancer 62(5):781–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rosti V, Bergamaschi G, Lucotti C, Danova M, Carlo-Stella C, Locatelli F et al (1995) Oligodeoxynucleotides antisense to c-abl specifically inhibit entry into S-phase of CD34+ hematopoietic cells and their differentiation to granulocyte-macrophage progenitors. Blood 86(9):3387–3393

    Article  CAS  PubMed  Google Scholar 

  73. Bozzetti C, Nizzoli R, Camisa R, Guazzi A, Ceci G, Cocconi G et al (1997) Comparison between Ki-67 index and S-phase fraction on fine-needle aspiration samples from breast carcinoma. Cancer 81(5):287–292

    Article  CAS  PubMed  Google Scholar 

  74. Cova E, Cereda C, Galli A, Curti D, Finotti C, Di Poto C et al (2006) Modified expression of Bcl-2 and SOD1 proteins in lymphocytes from sporadic ALS patients. Neurosci Lett 399(3):186–190. https://doi.org/10.1016/j.neulet.2006.01.057

    Article  CAS  PubMed  Google Scholar 

  75. Montanaro L, Mazzini G, Barbieri S, Vici M, Nardi-Pantoli A, Govoni M et al (2007) Different effects of ribosome biogenesis inhibition on cell proliferation in retinoblastoma protein- and p53-deficient and proficient human osteosarcoma cell lines. Cell Prolif 40(4):532–549. https://doi.org/10.1111/j.1365-2184.2007.00448.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cova E, Ghiroldi A, Guareschi S, Mazzini G, Gagliardi S, Davin A et al (2010) G93A SOD1 alters cell cycle in a cellular model of Amyotrophic Lateral Sclerosis. Cell Signal 22(10):1477–1484. https://doi.org/10.1016/j.cellsig.2010.05.016

    Article  CAS  PubMed  Google Scholar 

  77. Vesey G, Deere D, Gauci MR, Griffiths KR, Williams KL, Veal DA (1997) Evaluation of fluorochromes for immunofluorescent labeling of microorganisms in environmental water samples. Cytometry 29:147–154

    Article  CAS  PubMed  Google Scholar 

  78. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018

    Article  CAS  PubMed  Google Scholar 

  79. Bruchez M, Moronne M, Gin P et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  PubMed  Google Scholar 

  80. Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    Article  CAS  PubMed  Google Scholar 

  81. Lee LY, Ong SL, Hu JY, Ng WJ, Feng Y, Tan X (2004) Use of semiconductor quantum dots for photostable immunofluorescence labeling of Cryptosporidium parvum. Appl Environ Microbiol 70:5732–5736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV et al (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using in engineered recombinant protein. J Am Chem Soc 122:12142–12150

    Article  CAS  Google Scholar 

  83. Bendall SC, Simonds EF, Qiu P, Amir ED, Krutzik PO, Finck R et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Irish J, Doxie D (2014) High-dimensional single-cell cancer biology. In: Fienberg H, Nolan G (eds) High-dimensional single cell analysis. Current topics in microbiology and immunology. Springer, Berlin, Heidelberg

    Google Scholar 

  85. Levine J, Simonds E, Bendall S (2015) Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162(1):184–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Atkuri KR, Stevens JC, Neubert H (2015) Mass cytometry: a highly multiplexed single-cell technology for advancing drug development. Drug Metab Dispos 43:227–233

    Article  PubMed  Google Scholar 

  87. Gautreau G, Pejoski D, Le Grand R, Cosma A, Beignon A-S, Tchitchek N (2017) SPADEVizR: an R package for visualization, analysis and integration of SPADE results. Bioinformatics 33:779–781

    CAS  PubMed  Google Scholar 

  88. Weber LM, Robinson MD (2016) Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A 89:1084–1096

    Article  CAS  PubMed  Google Scholar 

  89. Qiu P, Simonds EF, Bendall SC, Gibbs KD Jr, Bruggner RV, Linderman MD et al (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol 29:886–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Spitzer MH, Nolan GP (2016) Mass cytometry: single cells, many features. Cell 165:780–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Huang A, Postow M, Wherry EJ (2017) T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545:60–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano Mazzini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mazzini, G., Danova, M. (2023). Histochemistry in Advanced Cytometry: From Fluorochromes to Mass Probes. In: Pellicciari, C., Biggiogera, M., Malatesta, M. (eds) Histochemistry of Single Molecules. Methods in Molecular Biology, vol 2566. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2675-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2675-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2674-0

  • Online ISBN: 978-1-0716-2675-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics