Skip to main content
Log in

Both “Naked-Eye” and Fluorescent Sensor for Hg2+ Based upon 8-Hydroxyquinoline

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A chemosensor, 2,2′-(1,4-phenylenedivinylene)bis-8-acetoxyquinoline (1), its fluorescent sensing behavior toward representative alkali ions (Na+, K+), alkaline earth ions (Mg2+, Ca2+), and transition-metal ions (Ni2+, Cu2+, Zn2+, Hg2+, Pb2+, Cd2+) was intensively investigated. The compound (1) exhibited pronounced Hg2+ selective on–off-type fluoroionophoric properties among the representative ions in DMF/ethanol (1:9, v/v) solution. Moreover, the highly Hg2+-selective fluorescence quenching property in conjunction with a visible colorimetric change from colorless to light yellow can be observed, leading to potential fabrication of both “naked-eye” and fluorescent detection of Hg2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Czarnik AW (ed) (1992) Fluorescent chemosensors for ion and molecule recognition, ACS symposium series. American Chemical Society, Washington, DC, p 538

    Google Scholar 

  2. Aragoni MC, Arca M, Bencini A, Blake AJ, Caltagirone C, Decortes A, Demartin F, Devillanova FA, Faggi E, Dolci LS, Garau A, Isaia F, Lippolis V, Prodi L, Wilson C, Valtancoli B, Zaccheroni N (2005) Coordination chemistry of N-aminopropyl pendant arm derivatives of mixed N/S-, and N/S/O-donor macrocycles, and construction of selective fluorimetric chemosensors for heavy metal ions. Dalton Trans 21:2994–3004

    Article  Google Scholar 

  3. Prodi L (2005) Luminescent chemosensors: from molecules to nanoparticles. New J Chem 29:20–31

    Article  CAS  Google Scholar 

  4. Fernandez YD, Gramatges AP, Amendola V, Foti F, Mangano C, Pallavicini P, Patroni S (2004) Using micelles for a new approach to fluorescent sensors for metal cations. Chem Commun (14):1650–1651

  5. de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  6. Tang X, Peng X, Dou W, Mao J, Zheng J, Qin W, Liu W (2008) Design of a semirigid molecule as a selective fluorescent chemosensor for recognition of Cd(II). Org Lett 10:3653–3656

    Article  PubMed  CAS  Google Scholar 

  7. Yang H, Zhou Z, Huang K, Yu M, Li F, Yi T, Huang C (2007) Multisignaling Optical-electrochemical sensor for Hg2+ based on a rhodamine derivative with a ferrocene unit. Org Lett 9:4729–4732

    Article  PubMed  CAS  Google Scholar 

  8. Coskun A, Yilmaz MD, Akkaya EU (2007) Bis(2-pyridyl)-substituted boratriazaindacene as an NIR-emitting chemosensor for Hg(II). Org Lett 9:607–609

    Article  PubMed  CAS  Google Scholar 

  9. Kwon JY, Jang YJ, Lee YJ, Kim KM, Seo MS, Nam W, Yoon J (2005) A highly selective fluorescent chemosensor for Pb2+. J Am Chem Soc 127:10107–10111

    Article  PubMed  CAS  Google Scholar 

  10. Chen CT, Huang WP (2002) A highly selective fluorescent chemosensor for lead ions. J Am Chem Soc 124:6246–6247

    Article  PubMed  CAS  Google Scholar 

  11. Weng YQ, Yue F, Zhong YR, Ye BH (2007) A copper(II) Ion-selective ON–OFF-type fluoroionophore based on zinc Porphyrin − dipyridylamino. Inorg Chem 46:7749–7755

    Article  PubMed  CAS  Google Scholar 

  12. Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ (2006) A selective turn-on fluorescent sensor for imaging copper in living cells. J Am Chem Soc 128:10–11

    Article  PubMed  CAS  Google Scholar 

  13. Royzen M, Dai Z, Canary JW (2005) Ratiometric displacement approach to Cu(II) sensing by fluorescence. J Am Chem Soc 127:1612–1613

    Article  PubMed  CAS  Google Scholar 

  14. Basu N, Scheuhammer A, Grochowina N, Klenavic K, Evans D, Brien M, Chan M (2005) Effects of mercury on neurochemical receptors in wild river otters. Environ Sci Technol 39:3585–3591

    Article  PubMed  CAS  Google Scholar 

  15. Zhang Z, Wu D, Guo X, Qian X, Lu Z, Zu Q, Yang Y, Duan L, He Y, Feng Z (2005) Visible study of mercuric ion and its conjugate in living cells of mammals and plants. Chem Res Toxicol 18:1814–1820

    Article  PubMed  CAS  Google Scholar 

  16. Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18:149–175

    Article  PubMed  CAS  Google Scholar 

  17. Huang CC, Chang HT (2006) Selective gold-nanoparticle-based “Turn-on” fluorescent sensors for detection of mercury(II) in aqueous solution. Anal Chem 78:8332–8338

    Article  PubMed  CAS  Google Scholar 

  18. Nolan EM, Lippard SJ (2003) A “Turn-on” fluorescent sensor for the selective detection of mercuric ion in aqueous media. J Am Chem Soc 125:14270–14271

    Article  PubMed  CAS  Google Scholar 

  19. Yang YK, Yook KJ, Tae J (2005) A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J Am Chem Soc 127:16760–16761

    Article  PubMed  CAS  Google Scholar 

  20. Yoon S, Albers AE, Wong AP, Chang CJ (2005) Screening mercury levels in fish with a selective fluorescent chemosensor. J Am Chem Soc 127:16030–16301

    Article  PubMed  CAS  Google Scholar 

  21. Ko SK, Yang YK, Tae J, Shin I (2006) In vivo monitoring of mercury ions using a Rhodamine-based molecular probe. J Am Chem Soc 128:14150–14155

    Article  PubMed  CAS  Google Scholar 

  22. Zheng H, Qian ZH, Xu L, Yuan FF, Lan LD, Xu JG (2006) Switching the recognition preference of rhodamine B spirolactam by replacing one atom: design of rhodamine B thiohydrazide for recognition of Hg(II) in aqueous solution. Org Lett 8:859–861

    Article  PubMed  CAS  Google Scholar 

  23. Matsushita M, Meijler MM, Wirsching P, Lerner RA, Janda KD (2005) A blue fluorescent antibody − cofactor sensor for mercury. Org Lett 7:4943–4946

    Article  PubMed  CAS  Google Scholar 

  24. Pallavacini P, Diaz-Fernandez YA, Foti F, Mangaw C, Patroni S (2007) Fluorescent sensors for Hg2+ in micelles: a new approach that transforms an ON–OFF into an OFF–ON response as a function of the lipophilicity of the receptor. Chem Eur J 13:178–187

    Article  Google Scholar 

  25. Kim SH, Choi JK, Kim SK, Sim W, Kim JS (2006) On/off fluorescence switch of a calix[4]arene by metal ion exchange. Tetrahedron Lett 47:3737–3741

    Article  CAS  Google Scholar 

  26. Zhao Y, Zhong ZQ (2006) Tuning the sensitivity of a Foldamer-based mercury sensor by its folding energy. J Am Chem Soc 128:9988–9989

    Article  PubMed  CAS  Google Scholar 

  27. Trieflinger C, Rurack K, Daub J (2005) “Turn ON/OFF your LOV light”: Borondipyrromethene–flavin Dyads as biomimetic switches derived from the LOV domain. Angew Chem Int Ed 44:2288–2291

    Article  CAS  Google Scholar 

  28. Chen QY, Chen CF (2005) A new Hg2+-selective fluorescent sensor based on a dansyl amide-armed calix[4]-aza-crown. Tetrahedron Lett 46:165–168

    Article  Google Scholar 

  29. Kim JH, Hwang AR, Chang SK (2004) Hg2+-selective fluoroionophore of p-tert-butylcalix[4]arene-diaza-crown ether having pyrenylacetamide subunits. Tetrahedron Lett 45:7557–7561

    Article  CAS  Google Scholar 

  30. Talanova GG, Elkarim NSA, Talanov VS, Bartsch RA (1999) A Calixarene-based fluorogenic reagent for selective mercury(II) recognition. Anal Chem 71:3106–3109

    Article  PubMed  CAS  Google Scholar 

  31. Moon SY, Youn NJ, Park SM, Chang SK (2005) Diametrically disubstituted cyclam derivative having Hg2+-selective fluoroionophoric behaviors. J Org Chem 70:2394–2397

    Article  PubMed  CAS  Google Scholar 

  32. Cha NR, Kim MY, Kim YH, Choe JI, Chang SK (2002) New Hg2+-selective fluoroionophores derived from p-tert-butylcalix[4]arene–azacrown ethers. J Chem Soc Perkin Trans 2:1193–1196

    Google Scholar 

  33. Leray I, Lefevre JP, Delouis JF, Delaire J, Valeur B (2001) New Hg2+-selective fluoroionophores derived from p-tert-butylcalix[4]arene–azacrown ethers. Chem Eur J 7:4590–4598

    Article  PubMed  CAS  Google Scholar 

  34. Masuhara H, Shioyama H, Saito T, Hamada K, Yasoshima S, Mataga N (1984) Fluorescence quenching mechanism of aromatic hydrocarbons by closed-shell heavy metal ions in aqueous and organic solutions. J Phys Chem 88:5868–5873

    Article  CAS  Google Scholar 

  35. Mello JV, Finney NS (2005) Reversing the discovery paradigm: a new approach to the combinatorial discovery of fluorescent chemosensors. J Am Chem Soc 127:10124–10125

    Article  PubMed  Google Scholar 

  36. Chen B, Yu Y, Zhou Z, Zhong P (2004) Synthesis of novel nanocrystals as fluorescent sensors for Hg2+ ions. Chem Lett 33:1608–1609

    Article  CAS  Google Scholar 

  37. Fan LJ, Zhang Y, Jones WE (2005) Design and synthesis of fluorescence “Turn-on” chemosensors based on photoinduced electron transfer in conjugated polymers. Macromolecules 38:2844–2849

    Article  CAS  Google Scholar 

  38. Ono A, Togashi H (2004) Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew Chem Int Ed 43:4300–4302

    Article  CAS  Google Scholar 

  39. Chen P, He C (2004) A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions. J Am Chem Soc 126:728–729

    Article  PubMed  CAS  Google Scholar 

  40. Guo X, Qian X, Jia L (2004) Highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution. J Am Chem Soc 126:2272–2273

    Article  PubMed  CAS  Google Scholar 

  41. Coronado E, Galán-Mascarós JR, Martí-Gastaldo C, Palomares E, Durrant JR, Vilar R, Gratzel M, Nazeeruddin MK (2005) Reversible colorimetric probes for mercury sensing. J Am Chem Soc 127:12351–12356

    Article  PubMed  CAS  Google Scholar 

  42. Song K, Kim J, Park S, Chung K, Ahn S, Chang S (2006) Fluorogenic Hg2+-selective chemodosimeter derived from 8-hydroxyquinoline. Org Lett 8:3413–3416

    Article  PubMed  CAS  Google Scholar 

  43. Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104:3003–3036

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the NSFC (grant No. 20931003 and 91122007) and the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 20110211130002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weisheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Dou, W., Hu, X. et al. Both “Naked-Eye” and Fluorescent Sensor for Hg2+ Based upon 8-Hydroxyquinoline. J Fluoresc 22, 1547–1553 (2012). https://doi.org/10.1007/s10895-012-1093-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1093-6

Keywords

Navigation