Skip to main content
Log in

Conformational Transitions in Ariesaema curvatum Lectin: Characterization of an Acid Induced Active Molten Globule

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Biophysical characterization of a lectin from Ariesaema curvatum (ACL) was carried out using steady state as well as time resolved fluorescence and CD spectroscopy under various denaturing conditions. An intermediate with altered tryptophan microenvironment was detected in the phase diagram, which exibited pronounced secondary structure and hemagglutinating activity in presence of 0.25 M Gdn–HCl. An acid induced molten- globule like structure possessing activity and higher thermostability was detected. Transition to the molten globule state was reversible in nature. The lectin retained hemagglutinating activity even after incubation at 95 °C. Both chemical and thermal unfolding of the lectin were found to consist of multistate processes. Fluorescence quenching of ACL was strong with acrylamide and KI. The single tryptophan was found to be surrounded by high density of the positively charged amino acid residues as shown by a ten fold higher Ksv for KI compared to that for CsCl. The average lifetime of tryptophan fluorescence increased from 1.24 ns in the native state to 1.72 ns in the denatured state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sharon N (1993) Lectin-carbohydrate complexes of plants and animals: an atomic view. Trends Biochem Sci 18:221–226

    Article  PubMed  CAS  Google Scholar 

  2. Wright LM, Van Damme EJM, Barre A, Allen AK, Van Leuven F, Reynolds CD, Rouge P, Peumans WJ (1999) Isolation, characterization, molecular cloning and molecular modelling of two lectins of different specificities from bluebell (Scilla campanulata) bulbs. Biochem J 340:299–308

    Article  PubMed  CAS  Google Scholar 

  3. Guzman-Partida AM, Robles-Burgueno MR, Ortega-Nieblas M, Vazquez-Moreno I (2004) Purification and characterization of complex carbohydrate specific isolectins from wild legume seeds: Acacia constricta is (vinorama) highly homologous to Phaseolus vulgaris lectins. Biochimie 86:335–342

    Article  PubMed  CAS  Google Scholar 

  4. Singh J, Kamboj SS (2004) A novel mitogenic and anti-proliferative lectin from a wild cobra lily, Arisaema flavum. Biochem Biophys Res Commun 318:1057–1065

    Article  PubMed  CAS  Google Scholar 

  5. Wright LM, Reynolds CD, Rizkallah PJ, Allen AK, Van Damme EJM, Donovan MJ, Peumans WJ (2000) Structural characterisation of the native fetuin-binding protein Scilla campanulata agglutinin: a novel two-domain lectin. FEBS Lett 468:19–22

    Article  PubMed  CAS  Google Scholar 

  6. Van Damme EJM, Goossens K, Smeets K, Van Leuven F, Erhaert P, Peumans WJ (1995) The major tuber storage protein of araceae species is a lectin. Characterization and molecular cloning of the lectin from Arum maculatum, L. Plant Physiol 107:1147–1158

    Article  PubMed  Google Scholar 

  7. Wright LM, Wood SD, Reynolds CD, Rizkallah PJ, Peumans WJ, Van Damme EJM (1996) Purification, crystallization and preliminary X-ray analysis of a mannose-binding lectin from bluebell (Scilla campanulata) bulbs. Acta Crystallogr D52:1021–1023

    CAS  Google Scholar 

  8. Van Damme EJM, Allen AK, Peumans WJ (1988) Related mannose-specific lectins from different species of the family Amaryllidaceae. Physiol Plant 73:52–57

    Article  Google Scholar 

  9. Peumans WJ, Kellens JT, Allen AK, Van Damme EJM (1991) Isolation and characterize, ation of a seed lectin from elderberry (Sambucus nigra L.) and its relationship to the bark lectins. Carbohydr Res 213:7–17

    Article  PubMed  CAS  Google Scholar 

  10. Shangary S, Jatinder S, Sukhdev SK, Kulwant KK, Rajinder SS (1995) Purification and properties of four monocot lectins from the family Araceae. Phytochemistry 40:449–455

    Article  PubMed  CAS  Google Scholar 

  11. Singh J, Kamboj SS, Sandhu RS, Shangary S, Kamboj KK (1993) Purification and characterization of a tuber lectin from Alocasia indica. Phytochemistry 33:979–983

    Article  CAS  Google Scholar 

  12. Katre UV, Gaikwad SM, Bhagyawant SS, Deshpande UD, Khan MI, Suresh CG (2005) Crystallization and preliminary X-ray characterization of a lectin from Cicer arietinum (chickpea). Acta Crystallogr F61:141–143

    CAS  Google Scholar 

  13. Katre UV, Suresh CG, Khan MI, Gaikwad SM (2008) Structure–activity relationship of a hemagglutinin from Moringa oleifera seeds. Int J Biol Macromol 42:203–207

    Article  PubMed  CAS  Google Scholar 

  14. Dharker PN, Gaikwad SM, Suresh CG, Dhuna V, Khan MI, Singh J, Kamboj SS (2009) Comparative studies of two araceous lectins by steady state and time-resolved fluorescence and CD spectroscopy. J Fluoresc 19:239–248

    Article  PubMed  CAS  Google Scholar 

  15. Gurjar MM, Khan MI, Gaikwad SM (1998) α-Galactoside binding lectin from Artocarpus hirsuta: characterization of the sugar specificity and the binding site. Biochim Biophys Acta 1381:256–264

    PubMed  CAS  Google Scholar 

  16. Lakowicz EM, Weber G (1973) Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry 12:4171–4179

    Article  PubMed  CAS  Google Scholar 

  17. Turoverov KK, Haitlina SY, Pinaev GP (1976) Ultra-violet fluorescence of actin. Determination of actin content in actin preparations. FEBS Lett 62:4–6

    Article  PubMed  CAS  Google Scholar 

  18. Su J-T, Kim S-H, Yan Y-B (2007) Dissecting the pretransitional conformational changes in aminoacylase Ι thermal denaturation. Biophys J 92:578–587

    Article  PubMed  CAS  Google Scholar 

  19. He H-W, Zhang J, Zhou H-M, Yan Y-B (2005) Conformational change in the C-terminal domain is responsible for the initiation of creatine kinase thermal aggregation. Biophys J 89:2650–2658

    Article  PubMed  CAS  Google Scholar 

  20. Bushmarina NA, Kuznetsova IM, Biktashev AG, Turoverov KK, Uversky VN (2001) Partially folded conformations in the folding pathway of bovine carbonic anhydrase II: a fluorescence spectroscopic analysis. Chembiochem 2:813–821

    Article  PubMed  CAS  Google Scholar 

  21. Wong JH, Wong CCT, Ng TB (2006) Purification and characterization of a galactose-specific lectin with mitogenic activity from pinto beans. Biochim Biophys Acta 1760:808–813

    PubMed  CAS  Google Scholar 

  22. Kaur A, Kamboj SS, Singh J, Saxena AK, Dhuna V (2005) Isolation of a novel N-acetyl-D-lactosamine specific lectin from Alocasia cucullata (Schott.). Biotechnol Lett 27:1815–1820

    Article  PubMed  CAS  Google Scholar 

  23. Dhuna V, Bains JS, Kamboj SS, Singh J, Shanmugavel AK Saxena (2005) Purification and characterization of a lectin from Arisaema tortuosum Schott having in-vitro anticancer activity against human cancer cell lines. J Biochem Mol Biol 38:526–532

    PubMed  CAS  Google Scholar 

  24. Siddiqui MZ, Sharma AK, Kumar S (1996) Solution conformation of tuftsin. Int J Biol Macromol 19:99–102

    Article  PubMed  CAS  Google Scholar 

  25. Brahamachari SK, Rapaka RS, Bhatnagar RS, Ananthanarayanan VS (1982) Proline-containing β turns in peptides and proteins.II. Physicochemical studies on tripeptides with the Pro-Gly sequence. Biopolymers 21:1107–1125

    Article  Google Scholar 

  26. Lehrer SS, Leavis PC (1978) Solute quenching of protein fluorescence. Methods Enzymol 49:222–236

    Article  PubMed  CAS  Google Scholar 

  27. Reddy GB, Srinivas VR, Ahmad N, Surolia A (1999) Molten globule-like state of peanut lectin monomer retains its carbohydrate specificity. J Biol Chem 274:4500–4503

    Article  PubMed  CAS  Google Scholar 

  28. Redfield C, Smith RAG, Dobson CM (1994) Structural characterization of a highly ordered molten globule at low pH. Nat Struct Biol 1:23–39

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Arvind Sahu, NCCS, Pune, and Prof. G. Krishnamoorthy, TIFR, Mumbai for permitting to use the CD spectrometer and time-resolved fluorescence facility, respectively. Urvashi thanks UGC, Govt. of India, for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushama M. Gaikwad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, U., Gaikwad, S.M., Suresh, C.G. et al. Conformational Transitions in Ariesaema curvatum Lectin: Characterization of an Acid Induced Active Molten Globule. J Fluoresc 21, 753–763 (2011). https://doi.org/10.1007/s10895-010-0766-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0766-2

Keywords

Navigation