Skip to main content
Log in

Iminobiotin Binding Induces Large Fluorescent Enhancements in Avidin and Streptavidin Fluorescent Conjugates and Exhibits Diverging pH-Dependent Binding Affinities

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The pH-dependent binding affinity of either avidin or streptavidin for iminobiotin has been utilized in studies ranging from affinity binding chromatography to dynamic force spectroscopy. Regardless of which protein is used, the logarithmic dependence of the equilibrium dissociation constant (Kd) on pH is assumed conserved. However a discrepancy has emerged from a number of studies which have shown the binding affinity of streptavidin for iminobiotin in solution to be unexpectedly low, with the Kd at values usually associated with non-specific binding even at strongly basic pH levels. In this work we have utilized a Bodipy fluorescent conjugate of avidin and an Oregon Green fluorescent conjugate of streptavidin to determine the Kd of the complexes in solution in the pH range of 7.0 to 10.7. The study was made possible by the remarkable fluorescent enhancement of the two fluorescent conjugates (greater than 10 fold) upon saturation with iminobiotin. The streptavidin-iminobiotin interaction exhibited almost no pH dependence over the range studied, with Kd consistently on the order of 10−5 M. In contrast, under identical experimental conditions the avidin-iminobiotin interaction exhibited the expected logarithmic dependence on pH. We discuss the possible origins for why these two closely related proteins would diverge in their binding affinities for iminobiotin as a function of pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Green NM (1966) Thermodynamics of binding of biotin and some analogues by avidin. Biochem J 101:774–780

    PubMed  CAS  Google Scholar 

  2. Heney G, Orr GA (1981) The purification of avidin and its derivatives on 2-iminobiotin-6-aminohexyl-sepharose 4B. Anal Biochem 114:92–96

    Article  PubMed  CAS  Google Scholar 

  3. Hofmann K, Titus G, Montibeller JA, Finn FM (1982) Avidin binding of carboxyl-substituted biotin and analogs. Biochemistry 21:978–984

    Article  PubMed  CAS  Google Scholar 

  4. Orr GA (1981) The use of the 2-iminobiotin-avidin interaction for the selective retrieval of labeled plasma-membrane components. J Biol Chem 256:761–766

    PubMed  CAS  Google Scholar 

  5. von Leoprechting A, Horth P, Haehnel W, Schilz E, Muhlenhoff U (1998) Identification of biotinylation sites on proteins by selective retrieval of 2-iminobiotinylated peptides from proteolytic peptide mixtures: localization of the accessible lysine residues on the photosystem I subunits PsaD and PsaE. Anal Biochem 262:110–121

    Article  Google Scholar 

  6. Zeheb R, Chang V, Orr GA (1983) An analytical method for the selective retrieval of iminobiotin-derivatized plasma-membrane proteins. Anal Biochem 129:156–161

    Article  PubMed  CAS  Google Scholar 

  7. Garret-Flaudy F, Freitag R (2001) Use of the avidin (imino)biotin system as a general approach to affinity precipitation. Biotechnol Bioeng 71:223–234

    Article  CAS  Google Scholar 

  8. Cao Y, Bai G, Zhang L, Bai F, Yang WB (2006) Immobilized iminobiotin on magnetic poly(vinyl alcohol) microspheres for single-step purification of streptavidin. Artif Cells Blood Substit Biotechnol 34:487–500

    Article  CAS  Google Scholar 

  9. Hofmann K, Wood SW, Brinton CC, Montibeller JA, Finn FM (1980) Imino-biotin affinity columns and their application to retrieval of streptavidin. Proc Nat Acad Sci USA 77:4666–4668

    Article  PubMed  CAS  Google Scholar 

  10. Hylarides MD, Mallett RW, Meyer DL (2001) A robust method for the preparation and purification of antibody/streptavidin conjugates. Bioconjug Chem 12:421–427

    Article  PubMed  CAS  Google Scholar 

  11. Melkko S, Dumelin CE, Scheuermann J, Neri D (2006) On the magnitude of the chelate effect for the recognition of proteins by pharmacophores scaffolded by self-assembling oligonucleotides. Chem Biol 13:225–231

    Article  PubMed  CAS  Google Scholar 

  12. Reznik GO, Vajda S, Sano T, Cantor CR (1998) A streptavidin mutant with altered ligand-binding specificity. Proc Nat Acad Sci USA 95:13525–13530

    Article  PubMed  CAS  Google Scholar 

  13. Alhakiem MHH, Landon J, Smith DS, Nargessi RD (1981) Fluorimetric assays for avidin and biotin based on biotin-induced fluorescence enhancement of the fluorescein-labeled avidin. Anal Biochem 116:264–267

    Article  CAS  Google Scholar 

  14. Emans N, Biwersi J, Verkman AS (1995) Imaging of endosome fusion in BHK fibroblasts based on a novel fluorometric avidin-biotin binding assay. Biophys J 69:716–728

    Article  PubMed  CAS  Google Scholar 

  15. Athappilly FK, Hendrickson WA (1997) Crystallographic analysis of the pH-dependent binding of iminobiotin by streptavidin. Protein Sci 6:1338–1342

    Article  PubMed  CAS  Google Scholar 

  16. Schwartz BL, Gale DC, Smith RD, Chilkoti A, Stayton PS (1995) Investigation of noncovalent ligand-binding to the intact streptavidin tetramer by electrospray-ionization mass-spectrometry. J Mass Spectrom 30:1095–1102

    Article  CAS  Google Scholar 

  17. Wortmann A, Jecklin MC, Touboul D, Badertscher M, Zenobi R (2008) Binding constant determination of high-affinity protein-ligand complexes by electrospray ionization mass spectrometry and ligand competition. J Mass Spectrom 43:600–608

    Article  PubMed  CAS  Google Scholar 

  18. Clarkson J, Batchelder DN, Smith DA (2001) UV resonance Raman study of streptavidin binding of biotin and 2-iminobiotin: comparison with avidin. Biopolymers 62:307–314

    Article  PubMed  CAS  Google Scholar 

  19. Miyamoto S, Kollman PA (1993) Absolute and relative binding free-energy calculations of the interaction of biotin and its analogs with streptavidin using molecular-dynamics free-energy perturbation approaches. Proteins Struct Funct Bioinform 16:226–245

    Article  CAS  Google Scholar 

  20. Moy VT, Florin EL, Gaub HE (1994) Intermolecular forces and energies between ligands and receptors. Science 266:257–259

    Article  PubMed  CAS  Google Scholar 

  21. Green NM (1990) Avidin and Streptavidin. Meth Enzymol 184:51–67

    Article  PubMed  CAS  Google Scholar 

  22. Weber PC, Wendoloski JJ, Pantoliano MW, Salemme FR (1992) Crystallographic and thermodynamic comparison of natural and synthetic ligands bound to streptavidin. J Am Chem Soc 114:3197–3200

    Article  CAS  Google Scholar 

  23. Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417

    Article  PubMed  CAS  Google Scholar 

  24. Merkel R, Nassoy P, Leung A, Ritchie K, Evans E (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397:50–53

    Article  PubMed  CAS  Google Scholar 

  25. Zhang XH, Moy VT (2003) Cooperative adhesion of ligand-receptor bonds. Biophys Chem 104:271–278

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc P. Raphael.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raphael, M.P., Rappole, C.A., Kurihara, L.K. et al. Iminobiotin Binding Induces Large Fluorescent Enhancements in Avidin and Streptavidin Fluorescent Conjugates and Exhibits Diverging pH-Dependent Binding Affinities. J Fluoresc 21, 647–652 (2011). https://doi.org/10.1007/s10895-010-0752-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0752-8

Keywords

Navigation