Skip to main content
Log in

Synthesis, Structure, Luminescent and Intramolecular Proton Transfer in Some Imidazole Derivatives

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A group of novel 2-aryl imidazole derivatives were synthesized and characterized by NMR spectra, X-ray, mass and CHN analysis. An excited state intramolecular proton transfer (ESIPT) process in hydroxy imidazoles (dmip and dmtip) have been studied using emission spectroscopy and it was detected that the two distinct ground state rotamers of I and II are responsible for the normal and the tautomer emission respectively. In hydrocarbon solvent, the tautomer emission predominates over the normal emission for both dmip and dmtip. This reveal that rotamer II is responsible for the tautomer emission and it is stabler than rotamer I which causes the normal emission. In alcoholic solvent like ethanol, a dramatic enhancement of normal emission is observed which was due to increased solvation, the more polar rotamer I become stabler than rotamer II. In dioxane—water mixtures it is observed that the addition of water inhibits the ESIPT process due to the formation of the intermolecular hydrogen bonding involving water. DFT calculations on energy, dipole moment, charge distribution of the rotamers in the ground and excited states of the imidazole derivatives were performed and discussed. PES calculation indicates that the energy barrier for the interconversion of two rotamers is too high in the excited state than the ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chou PT, Martinez ML, Clements JH (1993) Reversal of excitation behavior of proton-transfer vs. charge-transfer by dielectric perturbation of electronic manifolds. J Phys Chem 97:2618–2622

    Article  CAS  Google Scholar 

  2. Gai F, Rich RL, Petrich JW (1994) Monophotonic ionization of 7-azaindole, indole, and their derivatives and the role of overlapping excited states. J Am Chem Soc 116:735

    Article  CAS  Google Scholar 

  3. Das K, Sarkar N, Ghosh AK, Majumdar D, Nath DN, Bhattacharyya K (1994) Excited state intramolecular proton transfer in 2-(2′-hydroxyphenyl) benzimidazole and -benzoxazole: effect of rotamerism and hydrogen-bonding. J Phys Chem 98:9126

    Article  CAS  Google Scholar 

  4. Roberts EL, Dey J, Warner IM (1997) Excited-state intramolecular proton transfer of 2-(2′-hydroxyphenyl)benzimidazole in cyclodextrins and binary solvent mixtures. J Phys Chem A 101:5296–5301

    Article  CAS  Google Scholar 

  5. Agmon N (2005) Elementary steps in excited-state proton transfer. J Phys Chem A 109:13–35

    Article  PubMed  CAS  Google Scholar 

  6. Park S, Kwon OH, Lee YS, Jang DJ, Park SY (2007) Imidazole-based excited-state intramolecular proton-transfer (ESIPT) materials: observation of thermally activated delayed fluorescence (TDF). J Phys Chem A 111:9649–9653

    Article  PubMed  CAS  Google Scholar 

  7. Park S, Seo J, Kim SH, Park SY (2008) Tetraphenylimidazole-based excited-state intramolecular proton-transfer molecules for highly efficient blue electroluminescence. Adv Funct Mater 18:726–731

    Article  CAS  Google Scholar 

  8. Qian Y, Li S, Zhang G, Wang Q, Wang S, Xu H, Li C, Li Y, Yang G (2007) Aggregation-induced emission enhancement of 2-(2′-Hydroxyphenyl)benzothiazole-based excited-state intramolecular proton-transfer compounds. J Phys Chem A 111:5861–5868

    CAS  Google Scholar 

  9. LeGourriérec D, Kharlanov VA, Brown RG, Rettig W (2000) Excited-state intramolecular proton transfer (ESIPT) in 2-(2′-hydroxyphenyl)-oxazole and –thiazole. J Photochem Photobiol, A Chem 130:101–111

    Article  Google Scholar 

  10. Rodembusch FS, Campo LF, Stefani V, Rigacci A (2005) The first silica aerogels fluorescent by excited state intramolecular proton transfer mechanism (ESIPT). J Mater Chem 15:1537–1541

    Article  CAS  Google Scholar 

  11. Campo LF, Rodembusch FS, Stefani V (2006) New fluorescent monomers and polymers displaying an intramolecular proton-transfer mechanism in the electronically excited state (ESIPT). IV. Synthesis of acryloylamide and diallylamino benzazole dyes and its copolymerization with MMA. J Appl Polym Sci 99:2109–2116

    Article  CAS  Google Scholar 

  12. Rodembusch FS, Leusin FP, Campo LF, Stefani V (2007) Excited state intramolecular proton transfer in amino 2-(2′-hydroxyphenyl)benzazole derivatives: effects of the solvent and the amino group position. J Lumin 126:728–734

    Article  CAS  Google Scholar 

  13. Wu Y, Peng X, Fan J, Gao S, Tian M, Zhao J, Sun S (2007) Fluorescence sensing of anions based on inhibition of excited-state intramolecular proton transfer. J Org Chem 72:62–66

    Article  PubMed  CAS  Google Scholar 

  14. De Prasad S, Ash S, Dalai S, Mishra A (2007) A DFT-based comparative study on the excited states intramolecular proton transfer in 1-hydroxy-2-naphthaldehyde and 2-hydroxy-3-naphthaldehyde. J Mol Struc, Theochem 807:33–41

    Article  Google Scholar 

  15. Gostev FE, Kol’tsova LS, Petrukin AN, Titov AA, Shiyonok AI, Zaichenko NL, Marevtsev VS, Sarkisov OM (2003) Spectral luminescent properties and dynamics of intramolecular processes in 2, 4, 5-triarylimidazoles. J Photochem Photobiol, A Chem 156:15–22

    Article  CAS  Google Scholar 

  16. Sastre R, Costela A (1995) Polymeric solid-state dye lasers. Adv Mater 7:198–207

    Article  CAS  Google Scholar 

  17. Chou P, McMorrow D, Aartsma TJ, Kasha M (1984) The proton-transfer laser. Gain spectrum and amplification of spontaneous emission of 3-hydroxyflavone. J Phys Chem 88:4596–4599

    Article  CAS  Google Scholar 

  18. Stueber GJ, Kieninger M, Schetter H, Busch W, Goeller B, Franke J, Kramer HEA, Hoier H, Henkel S, Fischer P, Port H, Hirsch T, Rytz G, Birbaum JL (1995) Ultraviolet Stabilizers of the 2-(2′-Hydroxyphenyl)-1, 3, 5-triazine class: structural and spectroscopic characterization. J Phys Chem 99:10097–10109

    Article  CAS  Google Scholar 

  19. Catalan J, Fabero F, Guijarro MS, Clarumunt RM, Santa Maria MD (1999) Photoinduced intramolecular proton transfer as the mechanism of ultraviolet stabilizers: a reappraisal. J Am Chem Soc 112:747–759

    Article  Google Scholar 

  20. Volmer F, Rettig W (1996) Fluorescence loss mechanism due to large-amplitude motions in derivatives of 2, 2′-bipyridyl exhibiting excited-state intramolecular proton transfer and perspectives of luminescence solar concentrators. J Photochem Photobiol, A Chem 95:143–155

    Article  Google Scholar 

  21. Charles Potter AS, Brown RG (1988) Excited-state intramolecular proton transfer in polar solutions of 2-(2′-hydroxyphenyl) benzothiazole. Chem Phy Lett 153:7–12

    Article  Google Scholar 

  22. Jaworski A, Degórski A (1995) A theoretical study of the photoinduced intramolecular proton transfer in 2-(2′-hydroxyphenyl)-imidazoline. Comput Chem 19:189–197

    Article  CAS  Google Scholar 

  23. Flom SR, Barbara PF (1983) The photodynamics of 2-(2′-hydroxy-5′-methylphenyl)-benzotriazole in low-temperature organic glasses. Chem Phy Lett 94:488–493

    Article  CAS  Google Scholar 

  24. Guassian 03 program, (Gaussian Inc., Wallingford CT) (2004)

  25. Jayabharathi J, Thanikachalam V, Saravanan K (2009) Effect of substituents on the photoluminescence performance of Ir(III) complexes: synthesis, electrochemistry and photophysical properties. J Photochem Photobiol A Chem 208:13–20

    Article  CAS  Google Scholar 

  26. Saravanan K, Srinivasan N, Thanikachalam V, Jayabharathi J (2010) Synthesis and photophysics of some novel imidazole derivatives used as sensitive fluorescent chemisensors. J Fluoresc. doi:10.1007/s10895-010-0690-5

    Google Scholar 

  27. Ismet Kaya MY (2010) Synthesis of a novel fluorescent schiff base as a possible Cu(II) Ion selective sensor. J Fluoresc. doi:10.1007/s10895-010-0620-6

    PubMed  Google Scholar 

  28. Barbara PF, Walsh PK, Brus LE (1989) Picosecond kinetic and vibrationally resolved spectroscopic studies of intramolecular excited-state hydrogen atom transfer. J Phys Chem 93:29–34

    Article  CAS  Google Scholar 

  29. Woolfe GJ, Melzig M, Schneider S, Dörr F (1983) The role of tautomeric and rotameric species in the photophysics of 2-(2′-hydroxyphenyl) benzoxazole. Chem Phys 77:213–221

    Article  CAS  Google Scholar 

  30. Sobolewski AL (1993) On the mechanism of excited-state hydrogen transfer in 2-hydroxypyridine. Chem Phys Lett 211:293

    Article  CAS  Google Scholar 

  31. Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20:722–725

    Article  CAS  Google Scholar 

  32. Padmaja L, Ravikumar C, Sajan D, Hubert Joe I, Jayakumar VS, Pettit GR, Neilsen OF (2009) Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin-A2. J Raman Spectrosc 40:419–428

    Article  CAS  Google Scholar 

  33. Ravikumar C, Hubert Joe I, Jayakumar VS (2008) Charge transfer interactions and nonlinear optical properties of push-pull chromophore benzaldehyde phenylhydrazone: A vibrational approach. Chem Phys Lett 460:552–558

    Article  CAS  Google Scholar 

  34. Sun Q, Li Z, Zeng X, Ge M, Wang D (2005) Structures and properties of the hydrogen-bond complexes: Theoretical studies for the coupling modes of the pyrazole-imidazole system. J Mol Struct Theochem 724:167–172

    Article  CAS  Google Scholar 

  35. Chai SY, Zhou R, An ZW, Kimura A, Fukuho K, Matsumura M (2005) 5-Coordinated aluminium complexes having two 2,4-dimethyl-8-hydroxyquinoline ligands and a phenolic ligand as possible materials for white emission organic light emitting devices. Thin Solid Films 479:282–287

    Article  CAS  Google Scholar 

  36. Porter Y, OK KM, Bhuvanesh NSP, Halasyamani PS (2001) Synthesis and characterization of Te2SeO7: a powder second-harmonic-generating study of TeO2, Te2SeO7, Te2O5, and TeSeO4. Chem Mater 13:1910–1915

    Article  CAS  Google Scholar 

  37. Narayana Bhat M, Dharmaprakash SM (2002) Growth of nonlinear optical γ-glycine crystals. J Cryst Growth 236:376–380

    Article  Google Scholar 

  38. Karakas A, Elmali A, Unver H, Svoboda I (2004) Nonlinear optical properties of some derivatives of salicylaldimine-based ligands. J Mol Struct 702:103–110

    Article  CAS  Google Scholar 

  39. Unver H, Karakas A, Elmali A (2004) Nonlinear optical properties, spectroscopic studies and structure of 2-hydroxy-3-methoxy-N-(2-chloro-benzyl)-benzaldehyde-imine. J Mol Struct 702:49–54

    Article  CAS  Google Scholar 

  40. Lee IS, Shin DM, Yoon Y, Shin SM, Chung YK (2003) Synthesis and non-linear optical properties of (alkyne)dicobalt octacarbonyl complexes and their substitution derivatives. Inorg Chim Acta 343:41–50

    Article  CAS  Google Scholar 

  41. Mang C, Wu K, Zhang M, Hong T, Wei Y (2004) First-principle study on second-order optical nonlinearity of some ferrocenyl complexes. J Mol Struct Theochem 674:77–82

    Article  CAS  Google Scholar 

  42. Justin Thomas KR, Lin JT, Wen YS (1999) Synthesis, spectroscopy and structure of new push-pull ferrrocene complexes containing heteroaromatic rings (thiophene and furan) in the conjugation chain. J Organomet Chem 575:301–309

    Article  Google Scholar 

  43. Prabhu SG, Rao PM, Bhat SI, Upadyaya V, Inamdar SR (2001) Growth and characterization of N-(2-Chlorophenyl)-(1-Propanamide)-a nonlinear organic crystal. J Cryst Growth 233:375–379

    Article  CAS  Google Scholar 

  44. Crasta V, Ravindrachary V, Bharantri RF, Gonsalves R (2004) Growth and characterization of an organic NLO crystal: 1-(4-methylphenyl)-3-(4-methoxyphenyl)-2-propen-1-one. J Cryst Growth 267:129–133

    Article  CAS  Google Scholar 

  45. Gayathri P, Jayabharathi J, Srinivasan N, Thiruvalluvar A, Butcherc RJ (2010) 2-(4-Fluorophenyl)-4, 5-dimethyl-1-(4-methylphenyl)-1H-imidazole. Acta Crystallogr E66:o1703

    CAS  Google Scholar 

Download references

Acknowledgment

One of the author Dr. J. Jayabharathi, Reader in Chemistry, Annamalai University is thankful to Department of Science and Technology [No. SR/S1/IC-07/2007] and University Grants commission (F. No. 36–21/2008 (SR)) for providing fund to this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayaraman Jayabharathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayabharathi, J., Thanikachalam, V., Srinivasan, N. et al. Synthesis, Structure, Luminescent and Intramolecular Proton Transfer in Some Imidazole Derivatives. J Fluoresc 21, 595–606 (2011). https://doi.org/10.1007/s10895-010-0747-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0747-5

Keywords

Navigation