Skip to main content
Log in

Interaction of Imidacloprid with Hemoglobin by Fluorescence and Circular Dichroism

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Imidacloprid belongs to a major new class of insecticides, called neonicotinoids, which are accounting for 11–15% of the total insecticide market. The binding characteristics of insecticide imidacloprid with hemoglobin (Hb) have been studied by employing different spectroscopic techniques. The results proved the formation of complex between imidacloprid and Hb. Hydrophobic interaction and hydrogen bond dominated in the association reaction. Hydrophobic probe 8-anilino-1-naphthalenesulfonic acid (ANS) competitive experiments indicated that the binding of imidacloprid to Hb primarily took place in hydrophobic regions. The distance between Hb donor and acceptor imidacloprid was 4.88 nm as derived from Förster’s theory. Alternations of Hb secondary structure in the presence of imidacloprid were confirmed by synchronous fluorescence, circular dichroism (CD) and three-dimensional fluorescence spectra. This study enriches our understanding of toxic effect of imidacloprid to the physiologically important protein Hb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Watanabe E, Eun H, Baba K, Arao T, Ishii Y, Endo S, Ueji M (2004) Evaluation and validation of a commercially available enzyme-linked immunosorbent assay for the neonicotinoid insecticide imidacloprid in agricultural samples. J Agric Food Chem 52(10):2756–2762. doi:10.1021/jf0498867

    Article  CAS  PubMed  Google Scholar 

  2. Schippers N, Schwack W (2008) Photochemistry of imidacloprid in model systems. J Agric Food Chem 56(17):8023–8029. doi:10.1021/jf801251u

    Article  CAS  PubMed  Google Scholar 

  3. Liu ZW, Williamson MS, Lansdell SJ, Denholm I, Han ZJ, Millar NS (2005) A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc Natl Acad Sci USA 102(24):8420–8425. doi:10.1073/pnas.0502901102

    Article  CAS  PubMed  Google Scholar 

  4. Wamhoff H, Schneider V (1999) Photodegradation of imidacloprid. J Agric Food Chem 47(4):1730–1734. doi:10.1021/jf980820j

    Article  CAS  PubMed  Google Scholar 

  5. Déglise P, Grünewald B, Gauthier M (2002) The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci Lett 321(1–2):13–16. doi:10.1016/S0304-3940(01)02400-4

    Article  PubMed  Google Scholar 

  6. Dick RA, Kanne DB, Casida JE (2007) Nitroso-imidacloprid irreversibly inhibits rabbit aldehyde oxidase. Chem Res Toxicol 20(12):1942–1946. doi:10.1021/tx700265r

    Article  CAS  PubMed  Google Scholar 

  7. López Flores J, Molina Díaz A, Fernández de Córdova ML (2007) Development of a photochemically induced fluorescence-based optosensor for the determination of imidacloprid in peppers and environmental waters. Talanta 72(3):991–997. doi:10.1016/j.talanta.2006.12.024

    Article  PubMed  Google Scholar 

  8. Huang N-C, Lin S-L, Chou C-H, Hung Y-M, Chung H-M, Huang S-T (2006) Fatal ventricular fibrillation in a patient with acute imidacloprid poisoning. Am J Emerg Med 24(7):883–885. doi:10.1016/j.ajem.2006.03.008

    Article  PubMed  Google Scholar 

  9. Agarwal R, Srinivas R (2007) Severe neuropsychiatric manifestations and rhabdomyolysis in a patient with imidacloprid poisoning. Am J Emerg Med 25(7):844–845. doi:10.1016/j.ajem.2006.11.044

    Article  PubMed  Google Scholar 

  10. Shadnia S, Moghaddam HH (2008) Fatal intoxication with imidacloprid insecticide. Am J Emerg Med 26(5):634.e1–634.e4

    Article  Google Scholar 

  11. Malato S, Caceres J, Agüera A, Mezcua M, Hernando D, Vial J, Fernández-Alba AR (2001) Degradation of imidacloprid in water by photo-Fenton and TiO2 photocatalysis at a solar pilot plant: a comparative study. Environ Sci Technol 35(21):4359–4366. doi:10.1021/es000289k

    Article  CAS  PubMed  Google Scholar 

  12. Lukin JA, Ho C (2004) The structure-function relationship of hemoglobin in solution at atomic resolution. Chem Rev 104(3):1219–1230. doi:10.1021/cr940325w

    Article  CAS  PubMed  Google Scholar 

  13. Huang SC, Peterson ES, Ho C, Friedman JM (1997) Quaternary structure sensitive tyrosine interactions in hemoglobin: a UV resonance Raman study of the double mutant rHb (β99Asp→Asn, α42Tyr→Asp). Biochemistry 36(20):6197–6206. doi:10.1021/bi970018v

    Article  CAS  PubMed  Google Scholar 

  14. Undeland I, Kristinsson HG, Hultin HO (2004) Hemoglobin-mediated oxidation of washed minced cod muscle phospholipids: effect of pH and hemoglobin source. J Agric Food Chem 52(14):4444–4451. doi:10.1021/jf030560s

    Article  CAS  PubMed  Google Scholar 

  15. Perutz MF, Fermi G, Luisi B, Shaanan B, Liddington RC (1987) Stereochemistry of cooperative mechanisms in hemoglobin. Acc Chem Res 20(9):309–321. doi:10.1021/ar00141a001

    Article  CAS  Google Scholar 

  16. Wang YQ, Zhang HM, Zhang GC, Liu SX, Zhou QH, Fei ZH, Liu ZT (2007) Studies of the interaction between paraquat and bovine hemoglobin. Int J Biol Macromol 41(3):243–250. doi:10.1016/j.ijbiomac.2007.02.011

    Article  CAS  PubMed  Google Scholar 

  17. Cui Y, Guo JF, Xu BJ, Chen ZY (2006) Binding of chlorpyrifos and cypermethrin to blood proteins. Pestic Biochem Physiol 85(2):110–114. doi:10.1016/j.pestbp. 2005.11.004

    Article  CAS  Google Scholar 

  18. Adachi K, Ding M, Asakura T, Surrey S (2009) Relationship between β4 hydrogen bond and β6 hydrophobic interactions during aggregate, fiber or crystal formation in oversaturated solutions of hemoglobin A and S. Arch Biochem Biophys 481(2):137–144. doi:10.1016/j.abb.2008.11.006

    Article  CAS  PubMed  Google Scholar 

  19. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer Science+Business Media, New York

    Google Scholar 

  20. Chen Y-H, Yang JT, Martinez HM (1972) Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry 11(22):4120–4131. doi:10.1021/bi00772a015

    Article  CAS  PubMed  Google Scholar 

  21. Venkateshrao S, Manoharan PT (2004) Conformational changes monitored by fluorescence study on reconstituted hemoglobins. Spectrochim Acta Part A Mol Biomol Spectrosc 60(11):2523–2526. doi:10.1016/j.saa.2003.12.029

    Article  CAS  Google Scholar 

  22. Alpert B, Jameson DM, Weber G (1980) Tryptophan emission from human hemoglobin and its isolated subunits. Photochem Photobiol 31(1):1–4. doi:10.1111/j.1751-1097.1980.tb03674.x

    Article  CAS  PubMed  Google Scholar 

  23. Perutz MF, Fermi G, Abraham DJ, Poyart C, Bursaux E (1986) Hemoglobin as a receptor of drugs and peptides: x-ray studies of the stereochemistry of binding. J Am Chem Soc 108(5):1064–1078. doi:10.1021/ja00265a036

    Article  CAS  Google Scholar 

  24. Hirsch RE, Zukin RS, Nagel RL (1980) Intrinsic fluorescence emission of intact oxy hemoglobins. Biochem Biophys Res Commun 93(2):432–439. doi:10.1016/0006-291X(80)91096-7

    Article  CAS  PubMed  Google Scholar 

  25. Hirsch RE, Nagel RL (1981) Conformational studies of hemoglobins using intrinsic fluorescence measurements. J Biol Chem 256(3):1080–1083

    CAS  PubMed  Google Scholar 

  26. Gharagozlou M, Boghaei DM (2008) Interaction of water-soluble amino acid Schiff base complexes with bovine serum albumin: fluorescence and circular dichroism studies. Spectrochim Acta Part A Mol Biomol Spectrosc 71(4):1617–1622. doi:10.1016/j.saa.2008.06.027

    Article  Google Scholar 

  27. Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry 12(21):4161–4170. doi:10.1021/bi00745a020

    Article  CAS  PubMed  Google Scholar 

  28. Ware WR (1962) Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process. J Phys Chem 66(3):455–458. doi:10.1021/j100809a020

    Article  CAS  Google Scholar 

  29. He Y, Wang YW, Tang LF, Liu H, Chen W, Zheng ZL, Zou GL (2008) Binding of puerarin to human serum albumin: a spectroscopic analysis and molecular docking. J Fluoresc 18(2):433–442. doi:10.1007/s10895-007-0283-0

    Article  PubMed  Google Scholar 

  30. Kawahara NY, Ohno H (1997) Induced thermostability of poly(ethylene oxide)-modified hemoglobin in glycols. Bioconjug Chem 8(5):643–648. doi:10.1021/bc9701196

    Article  CAS  PubMed  Google Scholar 

  31. Ashoka S, Seetharamappa J, Kandagal PB, Shaikh SMT (2006) Investigation of the interaction between trazodone hydrochloride and bovine serum albumin. J Lumin 121(1):179–186. doi:10.1016/j.jlumin.2005.12.001

    Article  CAS  Google Scholar 

  32. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry 20(11):3096–3102. doi:10.1021/bi00514a017

    Article  CAS  PubMed  Google Scholar 

  33. Bi SY, Ding L, Tian Y, Song DQ, Zhou X, Liu X, Zhang HQ (2004) Investigation of the interaction between flavonoids and human serum albumin. J Mol Struct 703(1–3):37–45. doi:10.1016/j.molstruc.2004.05.026

    Article  CAS  Google Scholar 

  34. Chakraborty B, Basu S (2009) Interaction of BSA with proflavin: a spectroscopic approach. J Lumin 129(1):34–39. doi:10.1016/j.jlumin.2008.07.012

    Article  CAS  Google Scholar 

  35. Lloyd JBF, Evett IW (1977) Prediction of peak wavelengths and intensities in synchronously excited fluorescence emission spectra. Anal Chem 49(12):1710–1715. doi:10.1021/ac50020a020

    Article  CAS  Google Scholar 

  36. Miller JN (1979) Recent advances in molecular luminescence analysis. Proc Anal Div Chem Soc 16(7):203–208

    CAS  Google Scholar 

  37. Zhang HX, Huang X, Zhang M (2008) Thermodynamic studies on the interaction of dioxopromethazine to β-cyclodextrin and bovine serum albumin. J Fluoresc 18(3–4):753–760. doi:10.1007/s10895-008-0348-8

    Article  CAS  PubMed  Google Scholar 

  38. Zhang YH, Dong LJ, Li Y, Li JZ, Chen XG (2008) Characterization of interaction between bergenin and human serum albumin in membrane mimetic environments. J Fluoresc 18(3–4):661–670. doi:10.1007/s10895-008-0347-9

    Article  CAS  PubMed  Google Scholar 

  39. Marden MC, Kister J, Bohn B, Poyart C (1988) T-state hemoglobin with four ligands bound. Biochemistry 27(5):1659–1664. doi:10.1021/bi00405a041

    Article  CAS  PubMed  Google Scholar 

  40. Greenfield NJ (2006) Determination of the folding of proteins as a function of denaturants, osmolytes or ligands using circular dichroism. Nat Protoc 1(6):2733–2741. doi:10.1038/nprot.2006.229

    Article  CAS  PubMed  Google Scholar 

  41. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751(2):119–139

    CAS  PubMed  Google Scholar 

  42. Weber G (1961) Enumeration of components in complex systems by fluorescence spectrophotometry. Nature 190(4770):27–29. doi:10.1038/190027a0

    Article  CAS  PubMed  Google Scholar 

  43. Zhang YZ, Zhou B, Liu YX, Zhou CX, Ding XL, Liu Y (2008) Fluorescence study on the interaction of bovine serum albumin with p-aminoazobenzene. J Fluoresc 18(1):109–118. doi:10.1007/s10895-007-0247-4

    Article  CAS  PubMed  Google Scholar 

  44. Kang J, Liu Y, Xie MX, Li S, Jiang M, Wang YD (2004) Interactions of human serum albumin with chlorogenic acid and ferulic acid. Biochim Biophys Acta 1674(2):205–214

    CAS  PubMed  Google Scholar 

  45. Stryer L, Haugland RP (1967) Energy transfer: A spectroscopic ruler. Proc Natl Acad Sci USA 58(2):719–726. doi:10.1073/pnas.58.2.719

    Article  CAS  PubMed  Google Scholar 

  46. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 437(1–2):55–75. doi:10.1002/andp.19484370105

    Article  Google Scholar 

  47. Haouz A, Mohsni SE, Zentz C, Merola F, Alpert B (1999) Heterogeneous motions within human apohemoglobin. Eur J Biochem 264(1):250–257. doi:10.1046/j.1432-1327.1999.00628.x

    Article  CAS  PubMed  Google Scholar 

  48. Abou-Zied OK, Al-Shihi OIK (2008) Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. J Am Chem Soc 130(32):10793–10801. doi:10.1021/ja8031289

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Yurong Ma of College of Chemistry and Molecular Engineering, Peking University, for her constant support and expert assistance during the CD measurement experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, F., Han, BY., Liu, W. et al. Interaction of Imidacloprid with Hemoglobin by Fluorescence and Circular Dichroism. J Fluoresc 20, 753–762 (2010). https://doi.org/10.1007/s10895-010-0618-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0618-0

Keywords

Navigation