Skip to main content
Log in

Fluorescence Labelling of DNA by Carboxylic Polypyridyl-Ru Complexes Containing bpy and DIP Ligands: A Study Revisited

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The coordination complexes (DIP)2Ru(CH3bpyCOOH) and (DIP)2Ru(COOHbpyCOOH), where DIP and bpy are diphenylphenanthroline and bispyridine, have been recently proposed as fluorescent markers of nuclear DNA (Musatkina et al., J. Inorg. Biochem. 101:1086–1089, 2007), but no DNA binding investigation and no quantitative fluorescence evaluations had been done. Both complexes, as well as the smaller ones with bpy’s in place of DIP’s, have been investigated here by spectroscopic DNA titrations (UV–vis absorption, fluorescence, circular dichroism) and by in vitro cellular studies (flow cytometry and fluorescence imaging). Contrary to previous reports, neither the carboxylic function nor the more extended DIP ligand ensures any appreciable binding to DNA. This is clearly illustrated by the appearance of an isosbestic point of a second kind and by the proportionality of the fluorescence maximum intensity to the absorbance at the excitation wavelength. Above all, the lack of enhanced fluorescence in the presence of DNA definitively rules out the use of such complexes as DNA markers. Moreover, there is no detectable nuclear uptake. However, the fluorescent complexes with the DIP ligands, especially (DIP)2Ru(CH3bpyCOOH), are massively incorporated into the cytoplasm while preserving cell integrity, which could suggest other types of biological application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barton JK (1986) Metals and DNA: molecular left-handed complements. Science 233(4765):727–734

    Article  CAS  PubMed  Google Scholar 

  2. Jing B, Zhang M, Shen T (2004) Ruthenium(II)(bpy)2L]2+, where L are imidazo[f]-1, 10-phenanthrolines: synthesis, photophysics and binding with DNA. Spectrochim Acta A Mol Biomol Spectrosc 60(1):2635–2641

    Article  PubMed  Google Scholar 

  3. Zeglis BM, Pierre VC, Barton JK (2007) Metallo-intercalators and metallo-insertors. Chem Commun 44:4565–4579

    Article  Google Scholar 

  4. Dwyer FP, Gyarfas EC, Rogers WP, Koch JH (1952) Biological activity of complex ions. Nature 170(4318):190–191

    Article  CAS  PubMed  Google Scholar 

  5. Musatkina E, Amouri H, Lamoureux M, Chepurnykh T, Cordier C (2007) Mono- and dicarboxylic polypyridyl-Ru complexes as potential cell DNA dyes and transfection agents. J Inorg Biochem 101(7):1086–1089

    Article  CAS  PubMed  Google Scholar 

  6. Caspar R, Musatkina L, Tatosyan A, Amouri H, Gruselle M, Guyard-Duhayon C, Duval R, Cordier C (2004) Efficient DNA binding by optically Pure Ruthenium Tris(bipyridyl) complexes incorporating carboxylic functionalities. Solution and structural analysis. Inorg Chem 43(25):7986–7993

    Article  CAS  PubMed  Google Scholar 

  7. Kumar CV, Barton JK, Turro NJ (1985) Photophysics of ruthenium complexes bound to double helical DNA. J Am Chem Soc 107:5518–5523

    Article  CAS  Google Scholar 

  8. Belousoff NMJ, Bhatt AI, Bond AM, Deacon GB, Gasser G, Spiccia L (2007) Synthesis, structure, spectroscopic properties, and electrochemical oxidation of ruthenium(II) complexes Incorporating monocarboxylate bipyridine ligands. Inorg Chem 46(21):8638–8651

    Article  PubMed  Google Scholar 

  9. Barnard PJ, Vagg RS (2005) A spectroscopic investigation of the self-association and DNA binding properties of a series of ternary ruthenium(II) complexes. J Inorg Biochem 99(5):1009–1017

    Article  CAS  PubMed  Google Scholar 

  10. Caspar R, Amouri H, Gruselle M, Cordier C, Malézieux B, Duval R, Lévêque H (2003) Efficient asymmetric synthesis of Δ- and Λ-enantiomers of (bipyridyl) ruthenium complexes and crystallographic analysis of Δ-bis(2, 2′-bipyridine-4, 4′-dicarboxylato) ruthenium: diastereoselective homo- and hetro ion pairing revisited. Eur J Inorg Chem 2003(3):499–505

    Article  Google Scholar 

  11. Caspar R, Cordier C, Waern JB, Guyard-Duhayon C, Gruselle M, Le Floch P, Amouri H (2006) A new family of mono- and dicarboxylic ruthenium complexes [Ru(DIP)2(L2)]2+ (DIP = 4, 7-diphenyl-1, 10-phenanthroline): synthesis, solution behavior, and X-ray molecular structure of trans-[Ru(DIP)2(MeOH)2][OTf]2. Inorg Chem 45(10):4071–4078

    Article  CAS  PubMed  Google Scholar 

  12. Srinivasan S, Annaraj J, Athappan PR (2005) Spectral and redox studies on mixed ligand complexes of cobalt(III) phenanthroline/bipyridyl and benzoylhydrazones, their DNA binding and antimicrobial activity. J Inorg Biochem 99(3):876–882

    Article  CAS  PubMed  Google Scholar 

  13. Long EC, Barton JK (1990) On demonstrating DNA intercalation. Acc Chem Res 23(9):271–273

    Article  CAS  Google Scholar 

  14. Suh D, Chaires JB (1995) Criteria for the mode of binding of DNA binding agents. Bioorg Med Chem 3(6):723–728

    Article  CAS  PubMed  Google Scholar 

  15. Jenkins TC (1997) In: Fox KR (ed) Methods in molecular biology, vol. 90: drug-DNA interaction protocols. Humana, Totowa, pp 195–218

    Chapter  Google Scholar 

  16. Murphy-Poulton SF, Vagg RS, Vickery KA, Williams PA (1998) DNA binding of some chiral metallointercalators derived from 9, 10-phenanthrenediamine. Met Based Drugs 5(4):225–231

    Article  CAS  PubMed  Google Scholar 

  17. Xi PX, Xu ZH, Liu XH, Chen FJ, Zeng ZZ, Zhang XW, Liu Y (2009) Synthesis, characterization, antioxidant activity and DNA-binding studies of three rare earth (III) complexes with 1-(4-aminoantipyrine)-3-tosylurea ligand. J Fluoresc 19:63–72

    Article  CAS  PubMed  Google Scholar 

  18. Guan Y, Shi R, Li X, Zhao M, Li Y (2007) Multiple binding modes for dicationic hoechst 33258 to DNA. J Phys Chem B 111(25):7336–7344

    Article  CAS  PubMed  Google Scholar 

  19. McGhee JD, von Hippel PH (1974) Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol 86(2):469–489

    Article  CAS  PubMed  Google Scholar 

  20. van Holde KE, Johnson WC, Ho PS (2006) In: Carlson G (ed) Principles of physical biochemistry. Pearson, Upper Saddle River, pp 615–654

    Google Scholar 

  21. Fielding L (2000) Determination of association constants (Ka) from solution NMR data. Tetrahedron 56(34):6151–6170

    Article  CAS  Google Scholar 

  22. Graves DE (2001) In: Osheroff N, Bjornsti MA (eds) Methods in molecular biology, vol. 95: DNA topoisomerase protocols, part II: enzymology and drugs. Humana, Totowa, pp 161–169

    Google Scholar 

  23. Chen LM, Liu J, Chen JC, Tan CP, Shi S, Zheng KC, Ji LN (2008) Synthesis, characterization, DNA-binding and spectral properties of complexes [Ru(L)4(dppz)]2+ (L = Im and MeIm). J Inorg Biochem 102(2):330–341

    Article  CAS  PubMed  Google Scholar 

  24. Morgan JL, Buck DP, Turley AG, Collins JG, Keene FR (2006) Selectivity at a three-base bulge site in the DNA binding of ΔΔ-[{Ru(phen)2}2(μ-dppm)]4+ [dppm is 4, 6-bis(2-pyridyl)pyrimidine; phen is 1, 10-phenanthroline]. J Biol Inorg Chem 11(7):824–834

    Article  CAS  PubMed  Google Scholar 

  25. Dupureur C, Barton JK (1997) Structural studies of Λ- and Δ-[Ru(phen)2d ppz]2+ bound to d(GTCGAC)2: characterization of enantioselective intercalation. Inorg Chem 36(1):33–43

    Article  CAS  Google Scholar 

  26. Bhattacharya PK, Lawson HJ, Barton JK (2003) 1H NMR studies of nickel(II) complexes bound to oligonucleotides: a novel technique for distinguishing the binding locations of metal complexes in DNA. Inorg Chem 42(26):8811–8817

    Article  CAS  PubMed  Google Scholar 

  27. Myari A, Hadjiliadis N, Garoufis A (2005) Synthesis and characterization of the diastereomers Λ- and Δ-[Ru(bpy)2(m-bpy-L-Arg-Gly-L-Asn-L-Ala-L-His-L-Glu-L-Arg)]Cl2 1H NMR studies on their interactions with the deoxynucleotide duplex d[(5′-GCGCTTAAGCGC-3′)2] and d[(5′-CGCGATCGCG-3′)2]. J Inorg Biochem 99(2):616–626

    Article  CAS  PubMed  Google Scholar 

  28. Gaudry E, Aubard J, Amouri H, Levi G, Cordier C (2006) SERRS study of the DNA binding by Ru(II) tris-(Bipyridyl) complexes bearing one carboxylic group. Biopolymers 82(4):399–404

    Article  CAS  PubMed  Google Scholar 

  29. Caspar R, Amouri H, Gruselle M, Cordier C, Malézieux B, Duval R, Lévêque H (2003) correction Efficient asymmetric synthesis of D- and L-enantiomers of (bipyridyl) ruthenium complexes and crystallographic analysis of D-bis(2,2’-bipyridine-4,4’ –dicarboxylato) ruthenium: diastereoselective homo- and hetro ion pairing revisited. Eur J Inorg Chem 2003(16):3055

    Article  Google Scholar 

  30. Friedman AE, Kumar CV, Turro NJ, Barton JK (1991) Luminescence of ruthenium(II) polypyridyls: evidence for intercalative binding to Z-DNA. Nucleic Acids Res 19(10):2595–2602

    CAS  PubMed  Google Scholar 

  31. Barton JK, Basile LA, Danishefsky A, Alexandrescu A (1984) Chiral probes for the handedness of DNA helices: enantiomers of tris(4, 7-diphenylphenanthroline)ruthenium(II). Proc Natl Acad Sci USA 81(7):1961–1965

    Article  CAS  PubMed  Google Scholar 

  32. Kapuscinski J (1995) DAPI: a DNA-specific fluorescent probe. Biotech Histochem 70(5):220–233

    Article  CAS  PubMed  Google Scholar 

  33. Nair RB, Teng ES, Kirkland SL, Murphy CJ (1998) Synthesis and DNA-binding properties of [Ru(NH3)4dppz]2+. Inorg Chem 37(1):139–141

    Article  CAS  PubMed  Google Scholar 

  34. Shapiro HM (2003) Practical flow cytometry. Wiley, Hokoben

    Book  Google Scholar 

  35. Jiménez-Hernandez ME, Orellana G, Montero F, Portolès MT (2000) A ruthenium probe for cell viability measurement using flow cytometry, confocal microscopy and time-resolved luminescence. Photochem Photobiol 72(1):28–34

    Article  PubMed  Google Scholar 

  36. Puckett CA, Barton JK (2007) Methods to explore cellular uptake of ruthenium complexes. J Am Chem Soc 129(1):46–47

    Article  CAS  PubMed  Google Scholar 

  37. Puckett CA, Barton JK (2008) Mechanism of cellular uptake of a ruthenium polypyridyl complex. Biochemistry 47(45):11711–11716

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Dr. C. Cordier for having aroused our interest in these complexes. We are also very grateful to Dr. C. Cordier and Dr. H. Amouri for having provided us with the ruthenium complexes that had been synthesized by H. Amouri for their previous investigations. We thank Prof. J. Bolard for his advice on the spectroscopic approaches and Prof. J. Aubard for his encouragement. We are deeply grateful to Dr. J. Lomas for continuous support and fruitful discussions throughout this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michèle Lamoureux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamoureux, M., Seksek, O. Fluorescence Labelling of DNA by Carboxylic Polypyridyl-Ru Complexes Containing bpy and DIP Ligands: A Study Revisited. J Fluoresc 20, 631–643 (2010). https://doi.org/10.1007/s10895-009-0592-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0592-6

Keywords

Navigation