Skip to main content
Log in

Ground and Singlet Excited State Pyridinic Protonation of N9-Methylbetacarboline in Water-N,N-Dimethylformamide Mixtures

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The ground and the singlet excited state pyridinic protonation of 9-methyl-9H-pyrido[3,4-b]indole, MBC, in water-N,N-dimethylformamide mixtures has been studied by absorption, steady state and time resolved fluorescence measurements. These proton transfer reactions elapse by a stepwise mechanism modulated by different hydrogen bonded adducts and exciplexes formed by water molecules and the pyridinic nitrogen atom of the MBC. Based in the present and previous studies, a general mechanistic Scheme for the ground and the singlet excited state MBC pyridinic protonation has been proposed. Accordingly, in the ground state, upon increasing the water proportion of the water-N,N-dimethylformamide mixtures, a hydrogen bonded complex, HBC, its hydrogen bonded proton transfer complex, PTC, a pre-cationic complex, PC, and the cation, C, are progressively formed. In the excited state, MBC, HBC and PC behave as independent fluorophores. Excited state cations, C*, are mainly formed by direct excitation of the ground state cations and, in minor proportion, by the excited state reaction of the PTC* through the CL* exciplex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Scheme 4
Fig. 6
Scheme 5
Scheme 6

Similar content being viewed by others

References

  1. Abramovitch RA, Spencer ID (1964) The carbolines. Adv. Heterocycl. Chem. 3(1):79–207. doi:10.1016/S0065-2725(08)60542-5

    Article  CAS  PubMed  Google Scholar 

  2. Allen JRF, Holmstedt BR (1980) The simple 3-carboline alkaloids. Phytochem 19:1573–1982. doi:10.1016/S0031-9422(00)83773-5

    Article  CAS  Google Scholar 

  3. Balón M, Muñoz MA, Guardado P, Hidalgo J, Carmona C (1994) Photophysics and photochemistry of betacarbolines. Trends Photochem. Photobiol. 3(1):117–138

    Google Scholar 

  4. Bloom H, Barchas J, Sandler M, Usdin E (1982) Beta-carbolines and Tetrahydroisoquinolines, Progress in Clinical and Biological Research. Vol 90. Alan R. Liss Inc, New York

    Google Scholar 

  5. Braestrup C, Nielsen M, Olsen CE (1980) Urinary and brain β-caboline-3-carboxylates as potent inhibitors of brain benzodiazepine receptors. Proc. Natl. Acad. Sci. USA 77(4):2288–2292. doi:10.1073/pnas.77.4.2288

    Article  CAS  PubMed  Google Scholar 

  6. Carlini EA (2003) Plants and the central nervous system. Pharmacol. Biochem. Behav. 75(3):501–512. doi:10.1016/S0091-3057(03)00112-6

    Article  CAS  PubMed  Google Scholar 

  7. Meester C (1995) Genotoxic potential of β-carbolines: a review. Mutat. Res. 339:139–153

    CAS  PubMed  Google Scholar 

  8. Tamura S, Konakahara T, Komatsu H, Ozaki T, Ohta Y, Takeuchi H (1998) Synthesis of β-carboline derivatives and their interaction with duplex-DNA. Heterocycles 48(12):2477–2480

    Article  CAS  Google Scholar 

  9. Balón M, Muñoz MA, Carmona C, Guardado P, Galán M (1999) A fluorescence study of the molecular interactions of harmine with the nucleobases, their nucleosides and mononucleotides. Biophys. Chem. 80(1):41–52. doi:10.1016/S0301-4622(99)00059-9

    Article  PubMed  Google Scholar 

  10. Cao R, Peng W, Chen H, Ma Y, Liu X, Hou X, Guan H, Xu A (2005) DNA binding properties of 9-substituted harmine derivatives. Biochem. Biophys. Res. Commun. 338(3):1557–1563. doi:10.1016/j.bbrc.2005.10.121

    Article  CAS  PubMed  Google Scholar 

  11. Hudson JB, Towers GH (1991) Therapeutic potential of plantphotosensitizers. Pharmacol. Ther. 49(3):81–122. doi:10.1016/0163-7258(91)90055-Q

    Article  Google Scholar 

  12. Shimoi K, Kawabata H, Tomita I (1992) Enhancing effect of heterocyclic amines and β-carbolines on UV or chemically induced mutagenesis in E. coli. Mutat. Res. 268(2):287–295. doi:10.1016/0027-5107(92)90234-S

    CAS  PubMed  Google Scholar 

  13. Guan H, Liu X, Peng W, Cao R, Ma Y, Chen H, Xu A (2006) β-Carboline derivatives: Novel photosensitizers that intercalate into DNA to cause direct DNA damage in photodynamic therapy. Biochem. Biophys. Res. Commun. 342(3):894–901. doi:10.1016/j.bbrc.2006.02.035

    Article  CAS  PubMed  Google Scholar 

  14. Balón M, Hidalgo J, Guardado P, Muñoz MA, Carmona C (1993) Acid–base and spectral properties of betacarbolines. Part 2. Dehydro and fully aromatic betacarbolines. J. Chem. Soc., Perkin Trans. 2:99–104. doi:10.1039/p29930000099

    Google Scholar 

  15. Sakuros R, Ghiggino KP (1982) Excited state proton transfer in betacarboline. J. Photochem. 18(1):1–8. doi:10.1016/0047-2670(82)80002-6

    Article  Google Scholar 

  16. Wolfbeis OV, Fürlinger E, Wintersteiger R (1982) Solvent and pH-dependence of the absorption and fluorescence spectra of Harman: Detection of three ground state and four excited state species. Monatsh. Chem. 113:509–517. doi:10.1007/BF00799926

    Article  CAS  Google Scholar 

  17. Dias A, Varela AP, Miguel MG, Maçanita AL, Becker RS (1992) Beta-carboline photosensitizers 1. Photophysics, kinetics and excited-state equilibria in organic solvents, and theoretical calculations. J. Phys. Chem. 96(25):10290–10296. doi:10.1021/j100204a036

    Article  CAS  Google Scholar 

  18. Draxler S, Lippitsch ME (1993) Excited-state acid-base kinetics and equilibria in norharman. J. Phys. Chem. 99(44):11493–11496. doi:10.1021/j100146a024

    Article  Google Scholar 

  19. Varela AP, Dias A, Miguel MG, Becker RS, Maçanita AL (1995) Comment on excited-state acid-base kinetics and equilibria in Norharmane. J. Phys. Chem. 99(7):2239–2240. doi:10.1021/j100007a065

    Article  CAS  Google Scholar 

  20. Draxler S, Lippitsch ME (1995) Reply to “Comment on excited-state acid-base kinetics and equilibria in Norharmane”. J. Phys. Chem. 99(7):2241. doi:10.1021/j100007a066

    Article  CAS  Google Scholar 

  21. Dias A, Varela AP, Miguel MG, Becker RS, Burrows HD, Maçanita AL (1996) β-carbolines. 2. Rate constants of proton transfer from multiexponential decays in the lowest singlet excited state of harmine in water as a function of pH. J. Phys. Chem. 100:17970–17977. doi:10.1021/jp961406u

    Article  CAS  Google Scholar 

  22. Reyman D, Pardo A, Poyato JML (1994) Phototautomerism of betacarbolines. J. Phys. Chem. 98(41):10408–104110. doi:10.1021/j100092a004

    Article  CAS  Google Scholar 

  23. Reyman D, Viñas MH, Poyato JML, Pardo A (1997) Proton transfer dynamics of norharmane in organic solvents. J. Phys. Chem. A 101(5):768–775. doi:10.1021/jp961742a

    Article  CAS  Google Scholar 

  24. Reyman D, Viñas MH (1999) Temperature effect on excited-state proton transfer reactions of β-carboline in different acetic-acid mixtures. Chem. Phys. Lett. 301(5–6):551–558. doi:10.1016/S0009-2614(99)00060-3

    Article  CAS  Google Scholar 

  25. Chou P-T, Liu YI, Wu GR, Shiabo MY, Yu WS (2001) Proton-transfer tautomerim of β-carbolines mediated by hydrogen-bonded complexes. J. Phys. Chem. B 105(43):10674–10683. doi:10.1021/jp011031z

    Article  CAS  Google Scholar 

  26. Sánchez-Coronilla A, Carmona C, Muñoz MA, Balón M (2006) Ground state isomerism and dual emission of the β-carboline anhydrobase (N2-methyl-)H-pyrido[3, 4-b]indole) in aprotic solvents. Chem. Phys. 327(1):70–76. doi:10.1016/j.chemphys.2006.03.032

    Article  Google Scholar 

  27. Sánchez-Coronilla A, Balón M, Muñoz MA, Carmona C (2008) Influence of hydrogen bonding in the ground and the excited states of the isomers of the β-carboline anhydrobase (N2-methyl-9H-pyrido[3.4-b]indole) in aprotic solvents. Chem. Phys. 344(1):72–78. doi:10.1016/j.chemphys.2007.11.011

    Article  Google Scholar 

  28. Sánchez-Coronilla A, Balón M, Muñoz MA, Hidalgo J, Carmona C (2008) Ground state isomerism in betacarboline hydrogen bond complexes: the charge transfer nature of its large Stokes shifted emission. Chem. Phys. 351(1):27–32. doi:10.1016/j.chemphys.2008.03.025

    Article  Google Scholar 

  29. Balón M, Carmona C, Guardado P, Muñoz MA (1998) Hydrogen-bonding and proton transfer interactions between Harmane and trifluoroethanol in the ground and excited singlet states. Photochem. Photobiol. 67(4):414–419. doi:10.1111/j.1751-1097.1998.tb05220.x

    Article  Google Scholar 

  30. Carmona C, Galán M, Angulo G, Muñoz MA, Guardado P, Balón M (2000) Ground and singlet excited states hydrogen bonding interactions of betacarbolines. Phys. Chem. Chem. Phys. 2(22):5076–5083. doi:10.1039/b005455k

    Article  CAS  Google Scholar 

  31. Carmona C, Balón M, Galán M, Angulo G, Guardado P, Muñoz MA (2001) Kinetic study of hydrogen bonded exciplex formation of N9-methyl harmane. J. Phys. Chem. A 105(45):10334–10338. doi:10.1021/jp0104942

    Article  CAS  Google Scholar 

  32. Carmona C, Balón M, Galán M, Guardado P, Muñoz MA (2002) Dynamic study of excited state hydrogen-bonded complexes of harmane in cyclohexane-toluene mixtures. Photochem. Photobiol. 76(3):239–246. doi:10.1562/0031-8655(2002)076<0239:DSOESH>2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  33. Carmona C, Balón M, Sánchez Coronilla A, Muñoz MA (2004) New insights on the excited-state proton-transfer reactions of betacarbolines: Cationic exciplex formation. J. Phys. Chem. A 108:1910–1918. doi:10.1021/jp030829a

    Article  CAS  Google Scholar 

  34. Doig, G.G., Loudon, J.D., Mac Closkey, P.J.: The chemistry of the Mitragyna Genus. Part IV: Derivatives of Harman. J. Chem. Soc. 3912–3916 (1952) doi:10.1039/jr9520003912

  35. Frank HS, Wen WY (1957) Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure. Discuss. Faraday Soc. 24:133–140. doi:10.1039/df9572400133

    Article  Google Scholar 

  36. Gutmann V (1973) Redox properties: changes effected by coordination. Struct Bonding 15:141–166. doi:10.1007/BFb0036785

    Article  CAS  Google Scholar 

  37. Lee J, Robinson GW, Webb SP, Philips LA, Clark JH (1986) Hydration dynamics of protons from photon initiated acids. J. Am. Chem. Soc. 108(21):6538–6542. doi:10.1021/ja00281a016

    Article  CAS  Google Scholar 

  38. Robinson GW, Thidthethwhite PJ, Lee J (1986) Molecular aspects of ionic hydration reactions. J. Phys. Chem. 90(18):4224–4233. doi:10.1021/j100409a003

    Article  CAS  Google Scholar 

  39. Lee J, Griffin RD, Robinson GW (1985) 2-Naphthol: A simple example of proton transfer affected by water structure. J. Chem. Phys. 82(11):4920–4925. doi:10.1063/1.448665

    Article  CAS  Google Scholar 

  40. Solntsev KM, Huppert D, Agmon N, Tolbert LM (2000) Photochemistry of “super” photoacids. 2. Excited-state proton transfer in methanol/water mixtures. J. Phys. Chem. A 104(19):4658–4669. doi:10.1021/jp994454y

    Article  CAS  Google Scholar 

  41. Agmon N (2005) Elementary steps in excited-state proton transfer. J. Phys. Chem. A 109(1):13–35. doi:10.1021/jp047465m

    Article  CAS  PubMed  Google Scholar 

  42. Mohammed OF, Pines D, Dreyer J, Pines E, Nibbering ETJ (2005) Sequential proton transfer through water bridges in acid-base reactions. Science 310:83–86. doi:10.1126/science.1117756

    Article  CAS  PubMed  Google Scholar 

  43. Siwick BJ, Bakker HJ (2007) On the role of water in intermolecular proton-transfer reactions. J. Am. Chem. Soc. 129(44):13412–13420. doi:10.1021/ja069265p

    Article  CAS  PubMed  Google Scholar 

  44. de Grotthuss CJT (1806) Sur la décomposition de l’eau et des corps qu’elle tient en dissolution à l’aide de l’électricité galvanique. Ann Chim 58:54–73

    Google Scholar 

  45. Sicilia MC, Muñoz-Caro C, Niño A (2005) Theoretical analysis of pyridine protonation in water clusters of increasing size. ChemPhysChem 6(1):139–147. doi:10.1002/cphc.200400344

    Article  CAS  PubMed  Google Scholar 

  46. Sicilia MC, Niño A, Muñoz-Caro M (2005) Mechanism of pyridine protonation in water clusters of increasing size. J. Phys. Chem. A 109(37):8341–8347. doi:10.1021/jp050530n

    Article  CAS  PubMed  Google Scholar 

  47. Marcus Y (1993) The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev. 22:409–416. doi:10.1039/cs9932200409

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Dirección General Científica y Técnica MEC, CTQ2006-13539 and Junta de Andalucía, 2005/FQM-368, 2007/FQM-106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Balón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coronilla, A.S., Carmona, C., Muñoz, M.A. et al. Ground and Singlet Excited State Pyridinic Protonation of N9-Methylbetacarboline in Water-N,N-Dimethylformamide Mixtures. J Fluoresc 19, 1025–1035 (2009). https://doi.org/10.1007/s10895-009-0502-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0502-y

Keywords

Navigation