Skip to main content
Log in

Thermodynamics of the Dimer Formation of 2I,3I-O-(o-Xylylene)-per-O-Me-γ-cyclodextrin: Fluorescence, Molecular Mechanics and Molecular Dynamics

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The thermodynamics of the dimer formation of 2I,3I-O-(o-xylylene)-per-O-Me-γ-cyclodextrin (XmγCD) in aqueous solution was studied by fluorescence techniques, Molecular Mechanics and Molecular Dynamics. Lifetime averages \( \left\langle \tau \right\rangle \), obtained from fluorescence decay profiles upon excitation of the xylylene appended group, were used as the property sensitive to the association process. The dimerization equilibrium constants (K D) were obtained from non-linear regression analysis of the plots of \( \left\langle \tau \right\rangle \) against [XmγCD] at several temperatures and they were compared with the values obtained for the counterparts Xmα- and XmβCDs. The van’t Hoff plot allows us to obtain the ΔH and ΔS showing that the dimerization process was also entropically disfavoured. Molecular Mechanics as well as Molecular Dynamics calculations in the presence of water were also employed to study the conformational behaviour of isolated XmγCDs, the possible structure of the dimers formed and the driving forces involved in such association processes. Results indicate that those conformations where Xy moiety does not block the cavity entrance are favoured. Dimers are preferably formed by head-to-head CD approaching. However, the formation of stable head-to-tail is not dismissed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Szejtli J, Osa T (1996) Comprehensive supramolecular chemistry, Vol. 3. Pergamon, Oxford

    Google Scholar 

  2. D’Souza VT, Lipkowitz KB (1998) Cyclodextrins: introduction. Chem Rev 98(5):1741–1742. doi:10.1021/cr980027p

    Article  PubMed  Google Scholar 

  3. Harada A (2001) Cyclodextrin-based molecular machines A. Acc Chem Res 34(6):456–464. doi:10.1021/ar000174l

    Article  CAS  PubMed  Google Scholar 

  4. Nepogodiev SA, Stoddart JF (1998) Cyclodextrin-based catenanes and rotaxanes. Chem Rev 98(5):1959–1976. doi:10.1021/cr970049w

    Article  CAS  PubMed  Google Scholar 

  5. Madrid JM et al (1999) Experimental thermodynamics and molecular mechanics calculations of inclusion complexes of 9-methyl anthracenoate and 1-methyl pyrenoate with β-cyclodextrin. J Phys Chem B 103(23):4847–4853. doi:10.1021/jp9838240

    Article  CAS  Google Scholar 

  6. Cervero M, Mendicuti F (2000) Inclusion complexes of dimethyl 2, 6-naphthalenedicarboxylate with α- and β-cyclodextrins in aqueous medium: thermodynamics and molecular mechanics studies. J Phys Chem B 104(7):1572–1580. doi:10.1021/jp993418w

    Article  CAS  Google Scholar 

  7. Di Marino A, Mendicuti F (2002) Fluorescence of the complexes of 2-methylnaphthoate and 2-hydroxypropyl-α-, -β-, and -γ-cyclodextrins in aqueous solution. Appl Spectrosc 56(12):1579–1587. doi:10.1366/000370202321115841

    Article  Google Scholar 

  8. Pastor I, Di Marino A, Mendicuti F (2005) Complexes of dihexyl 2, 6-naphthalenedicarboxylate with α- and β-cyclodextrins: fluorescence and molecular modelling. J Photochem Photobiol 173(3):238–247. doi:10.1016/j.jphotochem.2005.04.003

    Article  CAS  Google Scholar 

  9. Di Marino A, Rubio L, Mendicuti F (2007) Fluorescence and molecular mechanics of 1-methyl naphthalenecarboxylate/cyclodextrin complexes in aqueous medium. J Incl Phenom Macrocycl Chem 58(1–2):103–114. doi:10.1007/s10847-006-9129-7

    Article  Google Scholar 

  10. Alvariza C et al (2007) Binding of dimethyl 2,3-naphthalenedicarboxylate with α-, β- and γ-cyclodextrins in aqueous solution. Spectroc Acta Pt A Mol Biomolec Spectr 67A(2):420. doi:10.1016/j.saa.2006.07.039

    Article  CAS  Google Scholar 

  11. Kodaka M, Fukaya T (1989) Induced circular dichroism spectrum of a α-cyclodextrin complex with heptylviologen. Bull Chem Soc Jpn 62(4):1154–1157. doi:10.1246/bcsj.62.1154

    Article  CAS  Google Scholar 

  12. Ueno A et al (1990) Host-guest sensory system of dansyl-modified β-cyclodextrin for detecting steroidal compounds by dansyl fluorescence. Chem Lett 4:605–608. doi:10.1246/cl.1990.605

    Article  Google Scholar 

  13. Berberan-Santos MN et al (1992) Multichromophoric cyclodextrins.1. Synthesis of o-naphthoyl-β-cyclodextrins and investigation of excimer formation and energy hopping. J Am Chem Soc 114(16):6427–6436. doi:10.1021/ja00042a021

    Article  CAS  Google Scholar 

  14. Berberan-Santos MN et al (1993) Multichromophoric cyclodextrins.2. Inhomogeneous spectral broadening and directed energy hopping. J Phys Chem 97(44):11376–11379. doi:10.1021/j100146a006

    Article  CAS  Google Scholar 

  15. Kodaka M (1993) A general rule for circular dichroism induced by a chiral macrocycle. J Am Chem Soc 115(9):3702–3705. doi:10.1021/ja00062a040

    Article  CAS  Google Scholar 

  16. Hamasaki K et al (1993) Fluorescent sensors of molecular recognition. Modified cyclodextrins capable of exhibiting guest-responsive twisted intramolecular charge transfer fluorescence. J Am Chem Soc 115(12):5035–5040. doi:10.1021/ja00065a012

    Article  CAS  Google Scholar 

  17. Gravett DM, Guillet JE (1993) Synthesis and photophysics of a water-soluble, naphthalene-containing β-cyclodextrin. J Am Chem Soc 115(14):5970–5974. doi:10.1021/ja00067a011

    Article  CAS  Google Scholar 

  18. Jullien L et al (1994) Antenna effect in multichromophoric cyclodextrins. Angew Chem Int Ed Engl 106(23/24):2582–2584

    CAS  Google Scholar 

  19. Wang Y et al (1994) Dansyl-β-cyclodextrins as fluorescent sensors responsive to organic compounds. Bull Chem Soc Jpn 67(6):1598–1607. doi:10.1246/bcsj.67.1598

    Article  CAS  Google Scholar 

  20. McAlpine SR, Garcia-Garibay MA (1996) Inside–outside isomerism of β-cyclodextrin covalently linked with a naphthyl group. J Am Chem Soc 118(11):2750–2751. doi:10.1021/ja953061j

    Article  CAS  Google Scholar 

  21. Park JW, Choi NH, Kim JH (1996) Facile dimerization of viologen radical cations covalently bonded to β-cyclodextrin and suppression of the dimerization by β-cyclodextrin and amphiphiles. J Phys Chem 100(2):769–774. doi:10.1021/jp9520308

    Article  CAS  Google Scholar 

  22. Ikeda H (1996) Fluorescent cyclodextrins for molecule sensing: fluorescent properties, NMR characterization, and inclusion phenomena of N-dansylleucine-modified cyclodextrins. J Am Chem Soc 118(45):10980–10988. doi:10.1021/ja960183i

    Article  CAS  Google Scholar 

  23. McAlpine SR, García-Garibay MA (1996) Binding studies of adamantanecarboxylic acid and a naphthyl-bound β-cyclodextrin by variable temperature 1H NMR. J Org Chem 61(23):8307–8309. doi:10.1021/jo9613794

    Article  CAS  PubMed  Google Scholar 

  24. Ikeda H et al (1997) NMR studies of conformations of N-dansyl-L-leucine-appended and N-dansyl-D-leucine-appended β-cyclodextrin as fluorescent indicators for molecular recognition. J Org Chem 62(5):1411–1418. doi:10.1021/jo960425x

    Article  CAS  Google Scholar 

  25. McAlpine SR, Garcia-Garibay MA (1998) Studies of naphthyl-substituted β-cyclodextrins. Self-aggregation and inclusion of external guests. J Am Chem Soc 120(18):4269–4275. doi:10.1021/ja972810p

    Article  CAS  Google Scholar 

  26. Schneider H-J, Hacket F, Rüdiger V (1998) NMR studies of cyclodextrins and cyclodextrin complexes. Chem Rev 98(5):1755–1785. doi:10.1021/cr970019t

    Article  CAS  PubMed  Google Scholar 

  27. Ishizu T, Kintsu K, Yamamoto H (1999) NMR study of the solution structures of the inclusion complexes of β-cyclodextrin with (+)-catechin and (−)-epicatechin. J Phys Chem B 103(42):8992–8997. doi:10.1021/jp991178e

    Article  CAS  Google Scholar 

  28. Ikunaga T et al (1999) The effects of avidin on inclusion phenomena and fluorescent properties of biotin-appended dansyl-modified β-cyclodextrin. Chem Eur J 5(9):2698–2704. doi:10.1002/(SICI)1521-3765(19990903)5:9<2698::AID-CHEM2698>3.0.CO;2-G

    Article  CAS  Google Scholar 

  29. Berberan-Santos MN et al (1999a) Multichromophoric cyclodextrins.6. Investigation of excitation energy hopping by Monte-Carlo simulations and time-resolved fluorescence anisotropy. J Am Chem Soc 121(11):2526–2533. doi:10.1021/ja983601n

    Article  CAS  Google Scholar 

  30. Berberan-Santos MN et al (1999b) Multichromophoric cyclodextrins. 8. Dynamics of homo- and heterotransfer of excitation energy in inclusion complexes with fluorescent dyes. J Am Chem Soc 122(48):11876–11886. doi:10.1021/ja000995l

    Article  Google Scholar 

  31. Hoshino T et al (2000) Daisy chain necklace: tri[2]rotaxane containing cyclodextrins. J Am Chem Soc 122(40):9876–9877. doi:10.1021/ja0018264

    Article  CAS  Google Scholar 

  32. Fujimoto T et al (2000) The first lipophilic face-to-face dimers of permethylated α-cyclodextrin-azobenzene dyads through a p-xylylene spacer. Chem Lett 5:564–565. doi:10.1246/cl.2000.564

    Article  Google Scholar 

  33. Fujimoto T (2000) The first lipophilic face-to-face dimers of permethylated α-cyclodextrin-azobenzene dyads through a p-xylylene spacer. Chem Lett 7:764–765. doi:10.1246/cl.2000.764

    Article  Google Scholar 

  34. Mirzoian A, Kaifer AE (1999) Electrochemically controlled self-complexation of cyclodextrin-viologen conjugates. Chem Commun (Camb) 16:1603–1604. doi:10.1039/a904095a

    Article  Google Scholar 

  35. Liu Y et al (2000) Molecular Interpenetration within the columnar structure of crystalline anilino-β-cyclodextrin. Org Lett 2:2761–2763. doi:10.1021/ol000135+

    Article  CAS  PubMed  Google Scholar 

  36. Inoue Y et al (2000) Supramolecular photochirogenesis.2.Enantio-differentiating photoisomerization of cyclooctene included and sensitized by 6-O-modified cyclodextrins. J Org Chem 65(23):8041–8050. doi:10.1021/jo001262m

    Article  CAS  PubMed  Google Scholar 

  37. Fujimoto T et al (2001) Photoswitching of the association of a permethylated α-cyclodextrin-azobenzene dyad forming a Janus [2]pseudorotaxane. Tetrahedron Lett 42(45):7987–7989. doi:10.1016/S0040-4039(01)01563-5

    Article  CAS  Google Scholar 

  38. Aoyagi T et al (2001) Fluorescence properties, induced-fit guest binding and molecular recognition abilities of modified γ-cyclodextrins bearing two pyrene moieties. Bull Chem Soc Jpn 74(1):157–164. doi:10.1246/bcsj.74.157

    Article  CAS  Google Scholar 

  39. Park K (2001) Preparation and self-inclusion properties of p-xylylenediamine-modified β-cyclodextrins: dependence on the side of modification. J Chem Soc Perkin Trans 2(11):2114–2118. doi:10.1039/b105388b

    Google Scholar 

  40. Kuwabara T et al (2002) Hetero-dimerization of dye-modified cyclodextrins with native cyclodextrins. J Org Chem 67(3):720–725. doi:10.1021/jo010696u

    Article  CAS  PubMed  Google Scholar 

  41. Park JW et al (2002) Facile dimerization and circular dichroism characteristics of 6-O-(2-Sulfonato-6-naphthyl)-β-cyclodextrin. J Phys Chem B 106(20):5177–5183. doi:10.1021/jp014191j

    Article  CAS  Google Scholar 

  42. Park JW et al (2002) Face selectivity of inclusion complexation of viologens with β-cyclodextrin and 6-O-(2-sulfonato-6-naphthyl)-β-cyclodextrin. J Phys Chem B 106(29):7186–7192. doi:10.1021/jp020428f

    Article  CAS  Google Scholar 

  43. Harada A et al (2003) Supramolecular polymers formed by cinnamoyl cyclodextrins. J Polym Sci A Polymer Chem (Kyoto) 41(22):3519–3523

    Article  CAS  Google Scholar 

  44. Liu Y et al (2003) Supra-molecular self-assemblies of β-cyclodextrins with aromatic tethers: factors governing the helical columnar versus linear channel super-structures. Org Chem 68(22):8345–8352. doi:10.1021/jo034632q

    Article  CAS  Google Scholar 

  45. Park JW et al (2003) Homo-dimerization and hetero-association of 6-O-(2-sulfonato-6-naphthyl)-γ-cyclodextrin and 6-deoxy-(pyrene-1-carboxamido)-β-cyclodextrin. J Org Chem 68(18):7071–7076. doi:10.1021/jo034623h

    Article  CAS  PubMed  Google Scholar 

  46. Liu Y et al (2003) Binding ability and self-assembly behavior of linear polymeric supramolecules formed by modified β-cyclodextrin. Org Lett 5(3):251–254. doi:10.1021/ol027146i

    Article  CAS  PubMed  Google Scholar 

  47. Balzani V (2003) Molecular devices and machines: a journey into the Nanoworld. Wiley-VCH, Weinhein

    Book  Google Scholar 

  48. Miyauchi M et al (2005) A [2]Rotaxane capped by a cyclodextrin and a guest: formation of supramolecular [2]Rotaxane polymer. J Am Chem Soc 127(7):2034–2035. doi:10.1021/ja042840+

    Article  CAS  PubMed  Google Scholar 

  49. Miyauchi M, Harada A (2005) A helical supramolecular polymer formed by host–guest interactions. Chem Lett 34(1):104–105. doi:10.1246/cl.2005.104

    Article  CAS  Google Scholar 

  50. Miyauchi M et al (2005) Chiral supramolecular polymers formed by host–guest interactions. J Am Chem Soc 127(9):2984–2989. doi:10.1021/ja043289j

    Article  CAS  PubMed  Google Scholar 

  51. Hasewaga Y et al (2005) Supramolecular polymers formed from βciclodextrins dimer linked by poly(ethyleneglycol) and guest dimers. Macromolecules 38(9):3724–3730. doi:10.1021/ma047451e

    Article  Google Scholar 

  52. Park JW (2005) Efficient inclusion complexation and intra-complex excitation energy transfer between aromatic group-modified β-cyclodextrins and a hemicyanine dye. J Photochem Photobiol Chem 173(3):271–278. doi:10.1016/j.jphotochem.2005.04.006

    Article  CAS  Google Scholar 

  53. Ikeda H et al (2005) Skeleton-selective fluorescent chemosensor based on cyclodextrin bearing a 4-amino-7-nitrobenz-2-oxa-1, 3-diazole moiety. Org Biomol Chem 3(23):4262–4267. doi:10.1039/b508477f

    Article  CAS  PubMed  Google Scholar 

  54. Nakashima H, Yoshida N (2006) Fluorescent detection for cyclic and acyclic alcohol guests by naphthalene-appended amino-β-cyclodextrins. Org Lett 8(22):4997–5000. doi:10.1021/ol0616079

    Article  CAS  PubMed  Google Scholar 

  55. Wu A et al (2006) Investigation on photophysical properties of a substituted 3H-indole-modified β-cyclodextrin. J Photochem Photobiol Chem 182(2):174–180. doi:10.1016/j.jphotochem.2006.02.008

    Article  CAS  Google Scholar 

  56. González-Álvarez MJ et al (2008) Study of the conformational and self-aggregation properties of 2I, 3I-O-(o-Xylylene)-per-O-Me-α- and -β-cyclodextrins by fluorescence and molecular modeling. J Chem Phys 112:13717–13729

    Google Scholar 

  57. Engeldinger E et al (2003) Capped cyclodextrins. Chem Rev 103(11):4147–4173. doi:10.1021/cr030670y

    Article  CAS  PubMed  Google Scholar 

  58. Balbuena P et al (2007) One-pot regioselective synthesis of 2I,3I-O-(o-xylylene)-capped cyclomaltooligosaccharides: tailoring the topology and supramolecular properties of cyclodextrins. Chem Commun (Camb) 31:3270–3272 doi:10.1039/b705644c

    Google Scholar 

  59. Wang W (1997) Synthetic study of selective benzylic oxidation. J Org Chem 62(19):6598–6602. doi:10.1021/jo962172d

    Article  CAS  Google Scholar 

  60. Uekama K, Irie T (1987) Cyclodextrins and their industrial uses. D.Duchême Edition Sante, Paris, Chapter 10

    Google Scholar 

  61. Aree T et al (2000) Novel type of thermostable channel clathrate hydrate formed by heptakis(2, 6-di-O-methyl)-β-cyclodextrin·15H2O-a paradigm of the hydrophobic effect. Angew Chem Int Ed 39(5):897–899. doi:10.1002/(SICI)1521-3773(20000303)39:5<897::AID-ANIE897>3.0.CO;2-R

    Article  CAS  Google Scholar 

  62. Jefrey GA (1996) In: Atwood JL, Davies JED, MacNicol DD, Vögtle F (eds) Comprehensive supramolecular chemistry, Vol. 6, Chap. 23. Pergamon Press, Oxford

    Google Scholar 

  63. Starikov EB et al (2001) Negative solubility coefficient of methylated cyclodextrins in water: a theoretical study. Chem Phys Lett 336:504–510. doi:10.1016/S0009-2614(01)00160-9

    Article  CAS  Google Scholar 

  64. Lakowicz JR (1999a) Principles of fluorescence spectroscopy, 2nd edn. Kluwer, New York, p 298

    Google Scholar 

  65. Lakowicz JR (1999b) Principles of fluorescence spectroscopy, 2nd edn. Kluwer, New York, p 239

    Google Scholar 

  66. SYBYL molecular modeling software (Version 6.9), Tripos Associates, Inc., St. Louis, MO

  67. Clark M et al (1989) Validation of the general purpose Tripos 5.2 force field. J Comput Chem 10(8):982–1012. doi:10.1002/jcc.540100804

    Article  CAS  Google Scholar 

  68. Brunel Y et al (1975) Program of minimization of the empirical energy of a molecule by a simple method. Tetrahedron 31(8):1075–1091. doi:10.1016/0040-4020(75)80129-3

    Article  CAS  Google Scholar 

  69. Press W et al (1988) Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge, p 312

    Google Scholar 

  70. Frisch MJ et al (2004) MOPAC (AM1): included in the Gaussian 03 package. Gaussian 03, revision C.02. Gaussian, Wallingford, CT

    Google Scholar 

  71. Blanco M (1991) Molecular silverware. I. General solutions to excluded volume constrained problems. J Comput Chem 12(2):237–247. doi:10.1002/jcc.540120214

    Article  CAS  Google Scholar 

  72. Pozuelo J et al (1996) Inclusion complexes of chain molecules with cycloamyloses. 1. Conformational analysis of the isolated cycloamyloses using molecular dynamics simulations. Comput Theor Polym Sci 6:125–134

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish MEC (projects CTQ2006-15515C02-01/BQU, CTQ2007-61180/PPQ, CTQ2005-04710/BQU and CTQ2008-03149/BQU), the Junta de Andalucía (P06-FQM-01601), the Comunidad de Madrid (S-055/MAT/0227) and the Junta de Castilla-La Mancha (grant to M.J.G-A). FM and MJG-A acknowledge the assistance of M. L. Heijnen with the preparation of the manuscript and L. M. Frutos for his valuable co-operation in some calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Mendicuti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Álvarez, M.J., Vicente, J., Mellet, C.O. et al. Thermodynamics of the Dimer Formation of 2I,3I-O-(o-Xylylene)-per-O-Me-γ-cyclodextrin: Fluorescence, Molecular Mechanics and Molecular Dynamics. J Fluoresc 19, 975–988 (2009). https://doi.org/10.1007/s10895-009-0497-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0497-4

Keywords

Navigation