Skip to main content
Log in

Rotational Diffusion of Coumarins in Aqueous DMSO

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The rotational dynamics of four structurally similar polar molecules viz., coumarin 440, coumarin 450, coumarin 466 and coumarin 151 has been studied in binary mixtures comprising of dimethyl sulphoxide and water at room temperature using the steady state fluorescence depolarization method and time correlated single photon counting technique. The binary mixtures are characterized by the fact that at a particular composition the viscosity (η) of the solution reaches a maximum value that is higher than the viscosities of either of the two co-solvents. The dielectric properties of the solution change across the composition range and the qualitative features of the solvent relaxation dynamics in complex systems are known to differ from those in simple solutions. A hook type profile of rotational reorientation time (τ r ) vs viscosity (η) is obtained for all the solutes in dipolar aprotic mixture of dimethyl sulphoxide-water, with the rotational reorientation times being longer in organic solvent-rich zone, compared to the corresponding isoviscous point in water-rich zone due to strong hydrogen bonding. Fluorescence lifetimes as well as rotational reorientation times are sensitive to the composition of the binary solvent system under study than to the viscosity suggesting the importance of local structure. The results are discussed in the light of hydrodynamic and dielectric friction models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nee TW, Zwanzig R (1970) Theory of dielectric relaxation in polar liquids. J Chem Phys 52:6353–6363 doi:10.1063/1.1672951

    Article  CAS  Google Scholar 

  2. Hubbord JB, Wolynes PG (1978) Dielectric friction and molecular reorientation. J Chem Phys 69:998–1006 doi:10.1063/1.436652

    Article  Google Scholar 

  3. Madden P, Kivelson D (1982) Dielectric friction and molecular reorientation. J Phys Chem 86:4244–4256 doi:10.1021/j100218a031

    Article  CAS  Google Scholar 

  4. Zwanzig R (1963) Dielectric friction on a rotating dipole. J Chem Phys 38:1605–1606 doi:10.1063/1.1776930

    Article  CAS  Google Scholar 

  5. Pimental GC, McClellan AL (1960) The Hydrogen bond. Freeman, San Francisco

    Google Scholar 

  6. Chuang TJ, Eisenthal KB (1971) Studies of effects of hydrogen bonding on orientational relaxation using picosecond light pulses. Chem Phys Lett 11:368–370 doi:10.1016/0009-2614(71)80510-9

    Article  CAS  Google Scholar 

  7. Eisenthal K (1975) Studies of chemical and physical processes with picosecond lasers. Acc Chem Res 8:118–124 doi:10.1021/ar50088a002

    Article  CAS  Google Scholar 

  8. Lessing HE, Von Jena A, Reichert M (1975) Orientational aspect of transient absorption in solutions. Chem Phys Lett 36:517–522 doi:10.1016/0009-2614(75)80293-4

    Article  CAS  Google Scholar 

  9. George JA (1997) An Introduction to hydrogen bonding. Oxford University press, New York

    Google Scholar 

  10. Bottcher CJF, Bordewijk P (1978) Theory of Electric Polarization II. Elsevier, Amsterdam and references therein

    Google Scholar 

  11. Dutt GB, Doraiswamy S (1996) Picosecond reorientational dynamics of polar dipoles in binary aqueous mixtures. J Chem Phys 96:2475–2491 doi:10.1063/1.462052

    Article  Google Scholar 

  12. Chandra A, Bagchi B (1991) Molecular theory of solvation and solvation dynamics in a binary dipolar liquid. J Chem Phys 94:8367–8387 doi:10.1063/1.460068

    Article  CAS  Google Scholar 

  13. Chandra A (1995) Ion solvation dynamics in binary dipolar liquids: theoretical and simulation results for mixtures of Stockmayer liquids. Chem Phys Lett 235:133–139 doi:10.1016/0009-2614(95)00085-I

    Article  CAS  Google Scholar 

  14. Skaf M, Ladanyi BM (1996) Molecular dynamics simulation of Solvation dynamics in methanol-water mixtures. J Phys Chem 100:18258–18268 doi:10.1021/jp961634o

    Article  CAS  Google Scholar 

  15. Laria D, Skaf M (1999) Solvation response of polar liquid mixtures: water-dimethylsulfoxide. J Chem Phys 111:300–309 doi:10.1063/1.479290

    Article  CAS  Google Scholar 

  16. Yoshimori A, Day TJF, Patey GN (1998) Theory of ion solvation dynamics in mixed dipolar solvents. J Chem Phys 109:3222–3231 doi:10.1063/1.476912

    Article  CAS  Google Scholar 

  17. Qunfang L, Yu-Chun H (1999) Correlation of viscosity of binary liquid mixtures. Fluid Phase Equil 154:153–163 and references therein, doi:10.1016/S0378-3812(98)00415-4

    Article  CAS  Google Scholar 

  18. Pal A, Daas G (2000) Excess molar volumes and viscosities of binary mixtures of tetraethylene glycol dimethyl ether (tetraglyme) with chloroalkanes at 298.15 K. J Mol Liq 84:327–337

    Article  CAS  Google Scholar 

  19. Beddard GS, Doust T, Hudales J (1981) Structural features in ethanol-water mixtures revealed by picosecond fluorescence anisotropy. Nature 294:145–146 doi:10.1038/294145a0

    Article  CAS  Google Scholar 

  20. Luzar A, Chandler D (1993) Structure and hydrogen bond dynamics of water-dimethyl sulfoxide mixtures by computer simulations. J Chem Phys 98:8160–8177 doi:10.1063/1.464521

    Article  CAS  Google Scholar 

  21. Martin D, Hanthal H (1975) Dimethyl Sulfoxide. Wiley, New York

    Google Scholar 

  22. De la Torre JC (1983) Biological Actions and Medical applications of dimethyl sulfoxide. Ann N Y Acad Sci 411: xi–xi

  23. Safford GJ, Schaffer PC, Leung PS, Doebbler GF, Brady GW, Lyden EFX (1969) Neutron inelastic scattering and x-ray studies of aqueous solutions of dimethylsulphoxide and dimethylsulphone. J Chem Phys 50:2140–2159 doi:10.1063/1.1671344

    Article  CAS  Google Scholar 

  24. Cowie MG, Toporowski PM (1964) Dimethyl sulphoxide—water association in the binary liquid system. Can J Chem 39:2240–2243 doi:10.1139/v61-296

    Article  Google Scholar 

  25. Gordalla BC, Zeidler MD (1986) Molecular dynamics in the system water-dimethylsulphoxide. Mol Phys 59:817–828 doi:10.1080/00268978600102411

    Article  CAS  Google Scholar 

  26. Packer KJ, Tomlinson DJ (1971) Nuclear spin relaxation and self-diffusion in the binary system, dimethylsulphoxide (DMSO) + water. Trans Faraday Soc 67:1302–1314 doi:10.1039/tf9716701302

    Article  CAS  Google Scholar 

  27. Tokuhiro T, Menafra M, Szmant HH (1974) Contribution of relaxation and chemical shift results to the elucidation of the structure of the water-DMSO liquid system. J Chem Phys 61:2275–2282 doi:10.1063/1.1682303

    Article  CAS  Google Scholar 

  28. Kaatze K, Pottel R, Schafer M (1989) Dielectric spectrum of dimethyl sulfoxide/water mixtures as a function of composition. J Phys Chem 93:5623–5627 doi:10.1021/j100351a057

    Article  CAS  Google Scholar 

  29. Vaisman II, Berkowitz ML (1992) Local structural order and molecular associations in water-DMSO mixtures. Molecular dynamics study. J Am Chem Soc 114:7889–7896 doi:10.1021/ja00046a038

    Article  CAS  Google Scholar 

  30. Soper AK, Luzar A (1996) Orientation of water molecules around small polar and nonpolar groups in solution: a neutron diffraction and computer simulation study. J Phys Chem 100:1357–1367 doi:10.1021/jp951783r

    Article  CAS  Google Scholar 

  31. Borin IA, Skaf MS (1999) Molecular association between water and dimethyl sulfoxide in solution: a molecular dynamics simulation study. J Chem Phys 110:6412–6420 doi:10.1063/1.478544

    Article  CAS  Google Scholar 

  32. Alavi DS, Waldeck DH (1991) A test of hydrodynamics in binary solvent systems. Rotational diffusion studies of oxazine 118. J Phys Chem 95:4848–4852 doi:10.1021/j100165a047

    Article  CAS  Google Scholar 

  33. Gudgin Templeton EF, Kenney-Wallace GA (1985) Picosecond laser spectroscopic study of orientational dynamics of probe molecules in the Me,SO-H,O system. J Phys Chem 90:2896–2900

    Article  Google Scholar 

  34. Krishnamurthy M, Kishore KK, Doraiswamy S (1993) Rotational diffusion kinetics of polar solutes in hexanethylphosphoramide-water systems. J Chem Phys 98:8640–8646 doi:10.1063/1.464471

    Article  CAS  Google Scholar 

  35. Gayathri BR, Mannekutla JR, Inamdar SR (2008) Rotational diffusion of coumarins in alcohols: a dielectric friction study. J Fluorescence 18:943–952 doi:10.1007/s10895-008-0337-y

    Article  CAS  Google Scholar 

  36. Fleming GR (1986) Chemical applications of ultra fast spectroscopy. Oxford University Press, London

    Google Scholar 

  37. Das K, Jain B, Dube A, Gupta PK (2005) pH dependent binding of chlorin-p6 with phosphatidyl choline liposomes. Chem Phys Lett 401:185–188 doi:10.1016/j.cplett.2004.11.051

    Article  CAS  Google Scholar 

  38. Einstein A (1956) Znwstigationson the Theov of the Bmwnian Movement. (Dover), New York

    Google Scholar 

  39. Debye P (1928) Polar molecules. (Dover), New York

    Google Scholar 

  40. Perrin F (1934) Brownian motion of an ellipsoid—I. Dielectric dispersion for ellipsoidal molecules. Mouvement brownien d’un ellipsoide—I. Dispersion diélectrique pour des molécules ellipsoidales. J Phys Radium 5:497–511 doi:10.1051/jphysrad:01934005010049700

    Article  CAS  Google Scholar 

  41. Hu CM, Zwanzig R (1974) Rotational friction coefficients for spheroids with the slipping boundary condition. J Chem Phys 60:4354–4357 doi:10.1063/1.1680910

    Article  CAS  Google Scholar 

  42. Gierer A, Wirtz K (1953) Molecular theory of microfriction. Z Naturforsch A 8:532–538

    Google Scholar 

  43. Dote JL, Kivelson D, Schwartz RN (l981) A molecular quasi-hydrodynamic free-space model for molecular rotational relaxation in liquids. J Phys Chem 85:2169–2180 doi:10.1021/j150615a007

    Google Scholar 

  44. Gayathri BR, Mannekutla JR, Inamdar SR (2008) Effect of binary solvent mixtures (DMSO/water) on the dipole moment and lifetime of coumarin dyes. J Mol Struct 889:383–393 doi:10.1016/j.molstruc.2008.02.020

    Article  CAS  Google Scholar 

  45. Edward JT (1970) Molecular volumes and the Stokes Einstein equation. J Chem Educ 47:261–270

    Article  CAS  Google Scholar 

  46. Dutt GB, Sachdeva A (2003) Temperature dependent rotational relaxation in a viscous alkane: interplay of shape factor and boundary condition on molecular rotation. J Chem Phys 118:8307–8314 doi:10.1063/1.1565992

    Article  CAS  Google Scholar 

  47. Ben-Amotz DD (1988) The solute size effect in rotational diffusion experiments: a test of microscopic friction theories. J Chem Phys 89:1019–1029 doi:10.1063/1.455253

    Article  CAS  Google Scholar 

  48. Williams AM, Jiang Y, Ben-Amotz D (1994) Molecular reorientation dynamics and microscopic friction in liquids. Chem Phys 180:119–129 doi:10.1016/0301-0104(93)E0421-Q

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Dr. P.K. Gupta, Dr. K. Das and Ms. B. Jain, RRCAT, Indore, for providing TCSPC facility. The funding in the form of a Major Research Project by the University Grants Commission (UGC), New Delhi, is gratefully acknowledged. One of the authors (BRG) is thankful to UGC for a fellowship under Faculty Improvement Program and to the management of JSS College, Dharwad for the support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.R. Inamdar.

Additional information

Dedicated to Professor M.I. Savadatti on his 77th Birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inamdar, S., Gayathri, B. & Mannekutla, J. Rotational Diffusion of Coumarins in Aqueous DMSO. J Fluoresc 19, 693–703 (2009). https://doi.org/10.1007/s10895-009-0463-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0463-1

Keywords

Navigation