Skip to main content
Log in

Rotational Diffusion Dynamics of Fluorescein Derivatives in Binary Mixtures of Solvents: An Experimental and Computational Study

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

With a view to understand the nature of solute solvent interactions, rotational reorientation times (τr) of three medium sized dipolar laser dyes viz., dichlorofluorescein (DCF), sodium fluorescein (SF) and kiton red (KR) in two binary mixtures namely, aqueous-DMSO and aqueous-1-propanol have been determined employing steady state fluorescence depolarization technique. The experimental results are analyzed in the light of SED hydrodynamic and of Gierer and Wirtz (GW) and Dote, Kivelson and Schwartz (DKS) quasihydrodynamic models. Rotational reorientation times (τr) are plotted as function of viscosity (η) on the binary solvent mixtures. An interesting hook shaped profile is observed in both the binary mixtures of solvents that is likely to shed light on solute-solvent interactions. Further, theoretical study has been carried out using Gaussian 09 software. The optimized geometry, HOMO-LUMO, energy gap and molecular electron potential map (MEPM) were extracted from DFT/B3LYP 6-311g(d) basis set. The hyper conjugation or intra-molecular delocalization was estimated from NBO analysis. Strong interactions were observed between nO33→σ*C31, πN38→σ*C12 and πO32→π*(C31- O33) with E(2) energies of 203.58, 121.89 and 39.92 kJ/mol for SF, KR and DCF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Nagasawa Y, Nakagawa Y, Nagafuji A, Okada T, Miyasaka H (2005) J Mol Struct 735:217

    Article  Google Scholar 

  2. Traube J (1886) Ber Dtsch Chem Ges B 19:871

    Article  Google Scholar 

  3. Mashimo S, Umehara T, Redlin H (1991) J Chem Phys 95:6257

    Article  CAS  Google Scholar 

  4. Großmann GH, Ebert KH (1981) Ber Bunsenges Phys Chem 85:1026

    Article  Google Scholar 

  5. Hayashi H, Hayashi H, Nishikawa K, Iijima T (1990) J Phys Chem 94:8334

    Article  CAS  Google Scholar 

  6. Bottcher CJF, Bordewijk P (1978) Theory of Electric Polarization II. Elsevier, Amsterdam (and references therein)

    Google Scholar 

  7. Dutt GB, Doraiswamy S (1992) J Chem Phys 96:2475

    Article  CAS  Google Scholar 

  8. Chandra A, Bagchi B (1991) J Chem Phys 94:8367

    Article  CAS  Google Scholar 

  9. Chandra A (1995) Chem Phys Lett 235:133

    Article  CAS  Google Scholar 

  10. Skaf M, Ladanyi BM (1996) J Phys Chem 100:18258

    Article  CAS  Google Scholar 

  11. Laria D, Skaf M (1999) J Chem Phys 111:300

    Article  CAS  Google Scholar 

  12. Day TJF, Patey GN (1997) J Chem Phys 106:2782

    Article  CAS  Google Scholar 

  13. Yoshimori A, Day TJF, Patey GN (1998) J Chem Phys 109:3222

    Article  CAS  Google Scholar 

  14. Qunfang L, Yu-Chun H (1999) Fluid phase equillibria 153–154 (and references therein)

  15. Pal A, Daas G (2000) J Mol Liq 84:327

    Article  CAS  Google Scholar 

  16. Beddard GS, Doust T, Hudales J (1981) Nature (London) 294:145

  17. Luzar A, Chandler D (1993) J Chem Phys 98:8160

    Article  CAS  Google Scholar 

  18. Martin D, Hanthal H (1975) Dimethyl Sulfoxide. Wiley, New York

    Google Scholar 

  19. De la Torre JC (1983) Ann NY Acad Sci 411:1

  20. Safford GJ, Schaffer PC, Leung PS, Doebbler GF, Brady GW, Lyden EFX (1969) J Chem Phys 50:2140

  21. Cowie MG, Toporowski PM (1964) Can J Chem 39:224

    Google Scholar 

  22. Fox F, Whittingham KP (1974) J Chem Soc Faraday Trans 75:1407

    Google Scholar 

  23. Tommila E, Pajunen A (1969) Suomen Kemistil. B41:172

    Google Scholar 

  24. Gordalla BC, Zeidler MD (1986) Mol Phys 59:817 and ibid (1991) 74:975

  25. Packer KJ, Tomlinson DJ (1971) Trans Faraday Soc 67:1302

    Article  CAS  Google Scholar 

  26. Tokuhiro T, Menafra L, Szmant HH (1974) J Chem Phys 61:2275

    Article  CAS  Google Scholar 

  27. Kaatze K, Pottel R, Schafer M (1989) J Phys Chem 93:5623

    Article  CAS  Google Scholar 

  28. Vaisman II, Berkowitz ML (1992) J Am Chem Soc 114:7889

    Article  CAS  Google Scholar 

  29. Soper AK, Luzar A (1996) J Phys Chem 100:1357 and (1992) J Chem Phys 97:1320

  30. Borin IA, Skaf MS (1998) Chem Phys Lett 296:125 and (1999) J Chem Phys 110:6412

  31. Ghosh S, Kim D, So P, Blankschtein D (2009) Int J Cosmet Sci 31:323

    Article  Google Scholar 

  32. Jiang J, Geroski D, Edelhauser H, Prausnitz M (2006) Invest Ophthamol Visual Sci 47:3011

    Article  Google Scholar 

  33. Kushner J, Kim D, So P, Blankschtein D, Langer R (2007) J Invest Dermatol 127:2832

    Article  CAS  Google Scholar 

  34. Fleming GR (1986) Chemical applications of ultrafast spectroscopy. Oxford University Press, London

    Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai V, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels A.D, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT

  36. Tiwari K, Arora P, Pandey N, Pandey P, Joshi HC, Pant S (2014) J Mol Liq 200:460

    Article  CAS  Google Scholar 

  37. Pujar GH, Wari MN, Steffi B, Varsha H, Kavita B, Panicker CY, Santhosh C, Patil A, Inamdar SR (2017) J Mol Liq 244:453

  38. Einstein A (1929) Investigations on the Theory of Brownian movement (Dover), New York

  39. Debye P (1929) Polar molecules, (Dover). New York

  40. Perrin F (1936) J Phys Radium 7:1

    Article  CAS  Google Scholar 

  41. Anderton RM, Kauffman JF (1994) J Phys Chem 98:12117

    Article  CAS  Google Scholar 

  42. Hu CM, Zwanzig R (1974) J Chem Phys 60:4354

  43. Gierer A, Wirtz K (1953) Z Naturforsch A 8:532

  44. Lakowicz JR (1983) Principles of Fluorescence Spectroscopy. Plenum, New York

    Book  Google Scholar 

  45. Mannekutla JR, Mulimani BG, Inamdar SR (2008) Spectrochim Acta Part A 69:419

    Article  CAS  Google Scholar 

  46. Nadaf YF, Mulimani BG, Gopal M, InamdarJ SR (2004) Mol Struct 678:177

    Article  CAS  Google Scholar 

  47. Edward JT (1970) J Chem Edu 47:261

    Article  CAS  Google Scholar 

  48. Ben-Amotz D, Drake JM (1988) J Chem Phys 89:1019

  49. Ulahannan RT, Panicker CY, Varghese HT, Alsenoy CV, Musiol R, Jampilek J, Anto PL (2014) Spectrochim Acta Part A 121:404

    Article  CAS  Google Scholar 

  50. Inamdar SR, Mannekutla JR, Sannaikar MS, Wari MN, Mulimani BG, Savadatti MI (2018) J Mol Liq 268:66

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support from the University Grants Commission, New Delhi under CPEPA (No.8-2/2008(NS/PE)) and DSA (Phase-III) grant sanctioned to Physics Department. One of the authors (Ms. Shrikrupa K.Chavan) is grateful to Karnatak University for the award of University Research Studentship. Authors thank the University Scientific Instrumentation Centre, Karnatak University for some spectral measurements.

Funding

The authors thank the University Grants Commission, New Delhi, India for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Shivaraj Patil: Investigation, Data curation, Validation, Writing- original draft, Software, Validation. Nagachandra K.H.: Investigation, Data curation, Validation. James R. Mannekutla: Investigation, Data curation, Validation. Shrikrupa K. Chavan: Investigation, Software, Data curation, Validation. Sanjeev R. Inamdar: Conceptualization, Visualization, Resources, Supervision, Writing - review & editing.

Corresponding author

Correspondence to Sanjeev R. Inamdar.

Ethics declarations

Ethics Approval

Not required for the present work.

Consent for Publication

All authors have consented for the publication of results presented herein.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, S.A., K.H., N., Mannekutla, J.R. et al. Rotational Diffusion Dynamics of Fluorescein Derivatives in Binary Mixtures of Solvents: An Experimental and Computational Study. J Fluoresc 32, 647–659 (2022). https://doi.org/10.1007/s10895-021-02878-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-021-02878-y

Keywords

Navigation