Skip to main content
Log in

A Comparative Study into Two Dual Fluorescent Mechanisms via Positional Isomers of N-hydroxyarene-1,8-naphthalimides

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Three isomers of hydroxy substituted N-aryl-1, 8-naphthalimides based on N-aryl naphthalic anhydride fluorophore have been synthesized. The decrease in fluorescence intensity from ortho to para substitution of hydroxy group on N-aryl reveals that para substituted isomer undergoes ESEC (Excited State with Extended Conjugation) mechanism which is proved by low quantum yield and appearance of dual emission. The ortho isomer, however, has high quantum yield and no tautomer emission, indicating ESIPT (Excited State Intramolecular Proton Transfer) mechanism is not operating. Similarly, all these isomers show strong fluorescence quenching in presence of strong H-bonding solvents like DMSO and pyridine, but there was neither the shift of emission bands nor the appearance of new bands for proton transfer to these solvents. Thus, it also indicates the absence of excited state proton transfer mechanism. Both the ortho isomer, and to a greater degree the meta isomer, showed larger quenching constants (Kapp) with pyridine than DMSO. This trend opposes the hydrogen-bond affinity for these solvents with phenol and points to a 2-point recognition interaction. In addition, a naphthalimide derivative using 2-aminoimidazole was prepared and examined for optimal positioning of a six-membered ring hydrogen bond pattern. No dual fluorescence was observed for this compound either.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Demchenko A (2005) Lab Chip 5:1210–1223 doi:10.1039/b507447a

    Article  PubMed  CAS  Google Scholar 

  2. Grabowski Z, Rotkiewicz K, Rettig W (2003) Chem Rev 103:3899–4031 doi:10.1021/cr940745l

    Article  PubMed  Google Scholar 

  3. Druzhinin SI, Kovalenko SA, Senyushkina TA, Demeter A, Machinek R, Noltemeyer M, Zachariasse KA (2008) J Phys Chem A 112:8238–8253

    Article  PubMed  CAS  Google Scholar 

  4. Yoshihara T, Druzhinin SI, Demeter A, Kocher N, Stalke D, Zachariasse KA (2005) J Phys Chem A 109:1497–1509

    Article  PubMed  CAS  Google Scholar 

  5. Zachariasse KA, Druzhinin SI, Bosch W, Machinek R (2004) J Am Chem Soc 126:1705–1715

    Article  PubMed  CAS  Google Scholar 

  6. Zachariasse KA, Yoshihara T, Druzhinin SI (2002) J Phys Chem A 106:6325–6333

    Article  CAS  Google Scholar 

  7. Iwashita Y, Sugiyasu K, Ikeda M, Fujita N, Shinkai S (2004) Chem Lett 33:1124–1125 doi:10.1246/cl.2004.1124b

    Article  CAS  Google Scholar 

  8. Haidekker MA, Theodorakis EA (2007) Org Biomol Chem 5:1669–1678 doi:10.1039/b618415dc

    Article  PubMed  CAS  Google Scholar 

  9. Kobiro K, Inoue Y (2003) J Am Chem Soc 125:421–427 doi:10.1021/ja028401xd

    Article  PubMed  CAS  Google Scholar 

  10. Yang CY, Liu Y, Zheng D, Zhu JC, Dai J (2007) J Photochem Photobiol Chem 188:51–55 doi:10.1016/j.jphotochem.2006.11.017e

    Article  CAS  Google Scholar 

  11. Jones G, Jimenez JAC (2001) J Photochem Photobiol B-Biology 65:5–12

    Article  CAS  Google Scholar 

  12. Papper V, Kharlanov V, Schadel S, Maretzki D, Rettig W (2003) Photochem Photobiol Sci 2:1272–1286

    Article  CAS  Google Scholar 

  13. Yang J-S, Hwang C-Y, Chen M-Y (2007) Tet Lett 48:3097–3102

    Article  CAS  Google Scholar 

  14. Klymchenko AS, Demchenko AP (2002) J Am Chem Soc 124:12372–12379 doi:10.1021/ja027669lb

    Article  PubMed  CAS  Google Scholar 

  15. Klymchenko AS, Ozturk T, Pivovarenko VG, Demchenko APN (2003) J Chem 27:1336–1343 doi:10.1039/b302965d

    CAS  Google Scholar 

  16. Weller AH (1956) Z Electrochem 60:1144

    CAS  Google Scholar 

  17. McMorrow D, Kasha M (1984) J Phys Chem 88:2235–2243 doi:10.1021/j150655a012

    Article  CAS  Google Scholar 

  18. Formosinho SJ, Arnaut LG (1993) Photochem Photobiol A-Chemistry 75:21–48

    Article  CAS  Google Scholar 

  19. Legourrierec D, Ormson SM, Brown RG (1994) Prog React Kin 19:211–275

    CAS  Google Scholar 

  20. Santara S, Krishnamoorthy G, Dogra SK (2000) J Phys Chem A 104:476–482 doi:10.1021/jp992678a

    Article  Google Scholar 

  21. Yushchenko DA, Bilokin MD, Pyvovarenko OV, Duportail G, Mely Y, Pivovarenko VG (2006) Tet Lett 47:905–908 doi:10.1016/j.tetlet.2005.11.160

    Article  CAS  Google Scholar 

  22. Inoue Y, Jiang P, Tsukada E et al (2002) J Am Chem Soc 124:6942–6949 doi:10.1021/ja016858l

    Article  PubMed  CAS  Google Scholar 

  23. Demeter A, Bérces T, Hinderberger J, Timåri G (2003) Photochem Photobiol Sci 2:273–281 doi:10.1039/b210592f

    Article  PubMed  CAS  Google Scholar 

  24. Demeter A, Bercés T, Biczok L, Wintgens V, Valat P, Kossanyi J (1996) J Phys Chem 100:2001–2011 doi:10.1021/jp951133n

    Article  CAS  Google Scholar 

  25. Cao H, Chang V, Hernandez R, Heagy MD (2005) J Org Chem 70:4929–4934 doi:10.1021/jo050157f

    Article  PubMed  CAS  Google Scholar 

  26. Gillespie AM (1985) A manual of fluorometric and spectrophotometric experiments. Gordon and Breach Science, New York

    Google Scholar 

  27. Gaussian 03, Revision D.01, Frisch MJ, Trucks GW, Pople JA et al (2004) Gaussian, Inc., Wallingford CT

  28. Hoa GHB, Kossanyi J, Demeter A, Biczok L, Bercés T (2004) Photochem Photobiol Sci 3:473–482 doi:10.1039/b313804f

    Article  PubMed  CAS  Google Scholar 

  29. Anslyn EV, Dougherty DA (2006) Modern physical organic chemistry. University Science Books, Sausalito, CA, p 953

    Google Scholar 

  30. Tolbert LM, Haubrich JE (1994) J Am Chem Soc 116:10593–10600 doi:10.1021/ja00102a028b

    Article  CAS  Google Scholar 

  31. Weller A (1961) Progress in Reaction Kinetics vol. 1. In: Porter G (ed) Pergamon, p.187–214

  32. Herbich J, Rettig W, Thummel RP, Waluk J (1992) Chem Phys Lett 195:556–562 doi:10.1016/0009-2614(92)85562-O

    Article  CAS  Google Scholar 

  33. Biczok L, Valat P, Wintgens V (1999) Phys Chem Chem Phys 1:4759–4766 doi:10.1039/a904520a

    Article  CAS  Google Scholar 

  34. Joesten MD, Schaad L (1974) Hydrogen bondin. J Marcel Dekker, Inc, New York

    Google Scholar 

  35. Lakowicz JR (1999) Principles of Fluorescence Spectroscopy, 2nd ed. Kluwer Academic/Plenum, p 243

  36. Coskun A, Akkaya EU (2004) Org Lett 6:241–243 doi:10.1021/ol0488744

    Article  Google Scholar 

  37. Wintgens V, Valat P, Kossanyi J, Demeter A, Biczok L, Bercés TN (1996) New J Chem 20:1149–1158

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the NIH-NIGMS for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Heagy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Appendix II. Flourescence data. (DOC 612 KB)

Appendix I: photophysical properties

Appendix I: photophysical properties

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paudel, S., Nandhikonda, P. & Heagy, M.D. A Comparative Study into Two Dual Fluorescent Mechanisms via Positional Isomers of N-hydroxyarene-1,8-naphthalimides. J Fluoresc 19, 681–691 (2009). https://doi.org/10.1007/s10895-009-0462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0462-2

Keywords

Navigation