Skip to main content
Log in

Synthesis and photophysical properties of extended π conjugated naphthalimides

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A series of π conjugated naphthalimide derivatives having an imide group as an acceptor conjugated with a methoxy arylethynyl or a methoxyphenyl triazole as a donor were prepared by Sonogashira coupling or “click” chemistry. Their photophysical properties were investigated by steady state and time resolved fluorescence spectroscopy and modelled by TD-DFT calculations. Compound Naphth-AlkyneOMe has a high fluorescence quantum yield and displays efficient photoinduced charge transfer in solution as well as in the powder state. Compound Naphth-TriazoleOMe exhibits a very high Stokes shift and its fluorescence quantum yield is low, which can be rationalized by theoretical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Valeur, and I. Leray, Design principles of fluorescent molecular sensors for cation recognition, Coord. Chem. Rev., 2000, 205, 3–40.

    Google Scholar 

  2. M. Fujii, M. Namba, M. Yamaji, and H. Okamoto, Solvent-induced multicolour fluorescence of amino-substituted 2,3-naphthalimides studied by fluorescence and transient absorption measurements, Photochem. Photobiol. Sci., 2016, 15, 842–850.

    Google Scholar 

  3. M. H. Ha-Thi, M. Penhoat, V. Michelet, and I. Leray, Highly selective and sensitive Hg2+ fluorescent sensors based on a phosphane sulfide derivative, Org. Biomol. Chem., 2009, 7, 1665–1673.

    Google Scholar 

  4. A. K. Bandela, S. Bandaru, and C. P. Rao, A Fluorescent 1,3-Diaminonaphthalimide Conjugate of Calix[4]arene for Sensitive and Selective Detection of Trinitrophenol: Spectroscopy, Microscopy, and Computational Studies, and Its Applicability using Cellulose Strips, Chem.–Eur. J., 2015, 21, 13364–13374.

    Google Scholar 

  5. C. Satriano, G. T. Sfrazzetto, M. E. Amato, F. P. Ballistreri, A. Copani, M. L. Giuffrida, G. Grasso, A. Pappalardo, E. Rizzarelli, G. A. Tomaselli, and R. M. Toscano, A ratiometric naphthalimide sensor for live cell imaging of copper(I), Chem. Commun., 2013, 49, 5565–5567.

    Google Scholar 

  6. J. Wang, L. Yang, C. Hou, and H. Cao, A new N-imidazolyl-1,8-naphthalimide based fluorescence sensor for fluoride detection, Org. Biomol. Chem., 2012, 10, 6271–6274.

    Google Scholar 

  7. S. S. Bag, R. Kundu, and M. Das, Click-reagent version of Sonogashira coupling protocol to conjugated fluorescent alkynes with no or reduced homocoupling, J. Org. Chem., 2011, 76, 2332–2337.

    Google Scholar 

  8. S. S. Bag, M. K. Pradhan, R. Kundu, and S. Jana, Highly solvatochromic fluorescent naphthalimides: design, synthesis, photophysical properties and fluorescence switch-on sensing of ct-DNA, Bioorg. Med. Chem. Lett., 2013, 23, 96–101.

    Google Scholar 

  9. X. Li, Y. Lin, Q. Wang, Y. Yuan, H. Zhang, and X. Qian, The novel anti-tumor agents of 4-triazol-1,8-naphthalimides: synthesis, cytotoxicity, DNA intercalation and photocleavage, Eur. J. Med. Chem., 2011, 46, 1274–1279.

    Google Scholar 

  10. M. Sawa, T. L. Hsu, T. Itoh, M. Sugiyama, S. R. Hanson, P. K. Vogt, and C. H. Wong, Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 12371–12376.

    Google Scholar 

  11. S. Ast, S. Kuke, P. J. Rutledge, and M. H. Todd, Using Click Chemistry to Tune the Properties and the Fluorescence Response Mechanism of Structurally Similar Probes for Metal Ions, Eur. J. Inorg. Chem., 2015, 2015, 58–66.

    Google Scholar 

  12. M. S. Alexiou, V. Tychopoulos, S. Ghorbanian, J. H. P. Tyman, R. G. Brown, and P. I. Brittain, The UV–visible absorption and fluorescence of some substituted 1,8-naphthalimides and naphthalic anhydrides, J. Chem. Soc., Perkin Trans. 2, 1990, 837–842.

    Google Scholar 

  13. J. N. Demas, and G. A. Crosby, Measurement of Photoluminescence Quantum Yields–Review, J. Phys. Chem., 1971, 75, 991–1024.

    Google Scholar 

  14. C. Katan, P. Savel, B. M. Wong, T. Roisnel, V. Dorcet, J. L. Fillaut, and D. Jacquemin, Absorption and fluorescence signatures of 1,2,3-triazole based regioisomers: challenging compounds for TD-DFT, Phys. Chem. Chem. Phys., 2014, 16, 9064–9073.

    Google Scholar 

  15. R. L. Martin, Natural transition orbitals, J. Chem. Phys., 2003, 118, 4775–4777.

    Google Scholar 

  16. V. Alain-Rizzo, D. Drouin-Kucma, C. Rouxel, I. Samb, J. Bell, P. Y. Toullec, V. Michelet, I. Leray, and M. Blanchard-Desce, Synthesis, Photophysical, and Two-Photon Absorption Properties of Elongated Phosphane Oxide and Sulfide Derivatives, Chem.–Asian J., 2011, 6, 1080–1091.

    Google Scholar 

  17. S. Ast, T. Fischer, H. Muller, W. Mickler, M. Schwichtenberg, K. Rurack, and H. J. Holdt, Integration of the 1,2,3-triazole “click” motif as a potent signalling element in metal ion responsive fluorescent probes, Chem.–Eur. J., 2013, 19, 2990–3005.

    Google Scholar 

  18. P. D. Zoon, I. H. M. van Stokkum, M. Parent, O. Mongin, M. Blanchard-Desce, and A. M. Brouwer, Fast photo-processes in triazole-based push-pull systems, Phys. Chem. Chem. Phys., 2010, 12, 2706–2715.

    Google Scholar 

  19. A.-S. Cornec, C. Baudequin, C. Fiol-Petit, N. Plé, G. Dupas, and Y. Ramondenc, One “Click” to Access Push-Triazole-Pull Fluorophores Incorporating a Pyrimidine Moiety: Structure-Photophysical Properties Relationships, Eur. J. Org. Chem., 2013, 1908–1915.

    Google Scholar 

  20. N. Mataga, Y. Kaifu, and M. Koizumi, The Solvent Effect on Fluorescence Spectrum - Change of Solute-Solvent Interaction during the Lifetime of Excited Solute Molecule, Bull. Chem. Soc. Jpn., 1955, 28, 690–691.

    Google Scholar 

  21. E. Z. Lippert, Dipolmoment und Elektronenstruktur von angeregten Molekülen, Z. Naturforsch., A: Astrophys. Phys. Phys. Chem., 1955, 10, 541–545.

    Google Scholar 

  22. X. Cao, L. Meng, Z. Li, Y. Mao, H. Lan, L. Chen, Y. Fan, and T. Yi, Large red-shifted fluorescent emission via intermolecular pi-pi stacking in 4-ethynyl-1,8-naphthalimide- based supramolecular assemblies, Langmuir., 2014, 30, 11753–11760.

    Google Scholar 

  23. S. Mukherjee, and P. Thilagar, Insights into the AIEE of 1,8 naphthalimides (NPIs): inverse effects of intermolecular interactions in solution and aggregates, Chem.–Eur. J., 2014, 20, 8012–8023.

    Google Scholar 

Download references

Acknowledgments

We gratefully thank Dr Gilles Clavier for fruitful discussions and advice on DFT calculations, and Arnaud Brosseau for his help with transient absorption measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Leray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rémy, C., Allain, C. & Leray, I. Synthesis and photophysical properties of extended π conjugated naphthalimides. Photochem Photobiol Sci 16, 539–546 (2017). https://doi.org/10.1039/c6pp00372a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00372a

Navigation