Skip to main content
Log in

Thiol-Capped CdTe Quantum Dots with Two-Photon Excitation for Imaging High Autofluorescence Background Living Cells

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

To effectively image living cells with quantum dots (QDs), particularly for those cells containing high content of native fluorophores, the two-photon excitation (TPE) with a femto-second 800 nm laser was employed and compared with the single-photon excitations (SPE) of 405 nm and 488 nm in BY-2 Tobacco (BY-2-T) and human hepatocellular carcinoma (QGY) cells, respectively. The 405 nm SPE produced the bright photoluminescence (PL) signals of cellular QDs but also induced a strong autofluorescence(AF) from the native fluorophores like flavins in cells. The AF occupied about 30% and 13% of the total signals detected in QD imaging channel in the BY-2-T and QGY cells, respectively. With the excitation of 488 nm SPE, the PL signals were lower than those excited with the 405 nm SPE, although the AF signals were also reduced. The 800 nm TPE generated the best PL images of intracellular QDs with the highest signal ratio of PL to AF, because the two-photon absorption cross section of QDs is much higher than that of the native fluorophores. By means of the TPE, the reliable cellular imaging with QDs, even for the cells having the high AF background, can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-Packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610. doi:10.1146/annurev.matsci.30.1.545

    Article  CAS  Google Scholar 

  2. Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018. doi:10.1126/science.281.5385.2016

    Article  PubMed  CAS  Google Scholar 

  3. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016. doi:10.1126/science.281.5385.2013

    Article  PubMed  CAS  Google Scholar 

  4. Mitchell P (2001) Turning the spotlight on cellular imaging. Nat Biotechnol 19:1013–1017. doi:10.1038/nbt1101-1013

    Article  PubMed  CAS  Google Scholar 

  5. Klarreich E (2001) Biologists join the dots. Nature 413:450–452. doi:10.1038/35097256

    Article  PubMed  CAS  Google Scholar 

  6. Liu T, Liu B, Zhang H, Wang Y (2005) The fluorescence bioassay platforms on quantum dots nanoparticles. J Fluorescence 15(5):729–733. doi:10.1007/s10895-005-2980-5

    Article  CAS  Google Scholar 

  7. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544. doi:10.1126/science.1104274

    Article  PubMed  CAS  Google Scholar 

  8. Klostranec JM, Chan WCW (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18:1953–1964. doi:10.1002/adma.200500786

    Article  CAS  Google Scholar 

  9. Zahavy E, Freeman E, Lustig S, Keysary A, Yitzhaki S (2005) Double labeling and simultaneous detection of B- and T cells using fluorescent nano-crystal (q-dots) in paraffin-embedded tissues. J Fluorescence 15(5):661–665. doi:10.1007/s10895-005-2972-x

    Article  CAS  Google Scholar 

  10. Zhang P (2006) Investigation of novel quantum dots/proteins/cellulose bioconjugateusing NSOM and fluorescence. J Fluorescence 16(3):349–353. doi:10.1007/s10895-005-0058-4

    Article  CAS  Google Scholar 

  11. Minet O, Dressler C, Beuthan J (2004) Heat stress induced redistribution of fluorescent quantum dots in breast tumor cells. J Fluorescence 14(3):241–247. doi:10.1023/B:JOFL.0000024555.60815.21

    Article  CAS  Google Scholar 

  12. Nabiev I, Mitchell S, Davies A, Williams Y, Kelleher D, Moore R, Gunko YK, Byrne S, Rakovich YP, Donegan JF, Sukhanova A, Conroy J, Cottell D, Gaponil N, Rogach A, Volkov Y (2007) Nano Lett 7(11):3452–3461. doi:10.1021/nl0719832

    Article  PubMed  CAS  Google Scholar 

  13. Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976. doi:10.1038/nbt994

    Article  PubMed  CAS  Google Scholar 

  14. Cai WB, Chen XY (2008) Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging Nature. Protocol 3:89–96. doi:10.1038/nprot.2007.478

    Article  CAS  Google Scholar 

  15. Derfus AM, Chan WCW, Bhatia SN (2003) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18. doi:10.1021/nl0347334

    Article  CAS  Google Scholar 

  16. Hardman R (2006) Toxicologic review of quantun dots:toxicity depends on physico-chemicm and environmental factors. Environ. Health Perspect 114:165–172

    Article  PubMed  Google Scholar 

  17. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436. doi:10.1126/science.1083780

    Article  PubMed  CAS  Google Scholar 

  18. Stroh M, Zimmer JP, Duda DG, Levchenko TS, Cohen KS, Brown EB, Scadden DT, Torchilin VP, Bawendi MG, Fukumura D, Jain RK (2005) Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Net Med 11:678–682. doi:10.1038/nm1247

    Article  CAS  Google Scholar 

  19. Xu C, Williams RM, Zipfel W, Webb WW (1996) Multiphoton excitation cross-sections of molecular fluorophores. Bioimaging 4:198–207. doi:10.1002/1361-6374(199609)4:3<198::AID-BIO10>3.3.CO;2-O

    Article  CAS  Google Scholar 

  20. Huang SH, Heikal AA, Webb WW (2002) Two-photon fluorescence spectroscopy and microscopy on NAD(P)H and flavoprotein. Biophys J 82:2811–2815

    Article  PubMed  CAS  Google Scholar 

  21. Rao JH, Dragulescu-Andrasi A, Yao HQ (2007) Fluorescence imaging in vivo: recent advances current. Opinion. In. Biotechonoly. 18:17–25

    Article  CAS  Google Scholar 

  22. Byrne SJ, Bon BL, Corr SA, Stefanko M, Oconnor C, Gunko YK, Rakovich YP, Donegan JF, Williams Y, Volkov Y, Evans PJ (2007) Synthesis, characterisation, and biological studies of CdTe quantum dot-naproxen conjugates. Chem Med Chem 2:183–186. doi:10.1002/cmdc.200600232

    PubMed  CAS  Google Scholar 

  23. Weng JF, Song XT, Li L, Qian HF, Chen KY, Xu XM, Cao CX, Ren JC (2006) Highly luminescent CdTe quantum dots prepared in aqueous phase as an alternative fluorescent probe for cell imaging. Talanta 70:397–402. doi:10.1016/j.talanta.2006.02.064

    Article  PubMed  CAS  Google Scholar 

  24. Xue FL, Chen JY, Guo J, Wang CC, Yang WL, Wang PN, Lu DR (2007) Enhancement of intracellular delivery of CdTe quantum dots (QDs) to living cells by Tat conjugation. J Fluorescence 17:149–154. doi:10.1007/s10895-006-0152-2

    Article  CAS  Google Scholar 

  25. Parak WJ, Pellegrino T, Plank C (2005) Labeling of cells with quantum dot. Nanotechnology 16:R9–R25. doi:10.1088/0957-4484/16/2/R01

    Article  CAS  Google Scholar 

  26. Zheng YG, Gao SJ, Ying JY (2007) Synthesis and cell-imaging applications of glutathione- capped CdTe quantum dots. Adv Mater 19:376–380. doi:10.1002/adma.200600342

    Article  CAS  Google Scholar 

  27. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmuller A, Weller H (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B 106:7177–7185. doi:10.1021/jp025541k

    Article  CAS  Google Scholar 

  28. Zhang H, Wang L, Xiong H, Hu L, Yang B, Li W (2003) Hydrothermal synthesis to high quality CdTe nanocrystals. Adv Mater 15:1712–1715. doi:10.1002/adma.200305653

    Article  CAS  Google Scholar 

  29. Guo J, Yang WL, Wang CC (2005) Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions. J Phys Chem B 109:17467–17473. doi:10.1021/jp044770z

    Article  PubMed  CAS  Google Scholar 

  30. Marco AD, Guzzardi P (1999) Solation of tobacco isoperoxidases accumulated in cell-suspension culture medium and characterization of activities related to cell wall metabolism. E Jamet Plant Physiol 120:371–382. doi:10.1104/pp.120.2.371

    Article  Google Scholar 

  31. Zhang Y, He J, Wang PN, Chen JY, Lu DR, Guo J, Wang CC, Yang WL (2006) Time-dependent photoluminescence blue shift of the quantum dots in living cells: effect of oxidation by singlet oxygen. J Am Chem Soc 128:13396–13401. doi:10.1021/ja061225y

    Article  PubMed  CAS  Google Scholar 

  32. Aldana J, Wang YA, Peng XG (2001) Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J Am Chem Soc 123:8844–8850. doi:10.1021/ja016424q

    Article  PubMed  CAS  Google Scholar 

  33. Wagnieres GA, Star WM, Wilson BC (1998) In vivo fluo-rescence spectroscopy and imaging for oncological applica-tions. Photochem Photobiol 68:603–632

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shanghai Municipal Science and Technology Commission (06ZR14005), the National Natural Science Foundation of China (10774027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Yao Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Chen, JY., Zhen, S. et al. Thiol-Capped CdTe Quantum Dots with Two-Photon Excitation for Imaging High Autofluorescence Background Living Cells. J Fluoresc 19, 615–621 (2009). https://doi.org/10.1007/s10895-008-0452-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0452-9

Keywords

Navigation