Skip to main content
Log in

Studies on Interaction of CdTe Quantum Dots with Bovine Serum Albumin Using Fluorescence Correlation Spectroscopy

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Luminescent quantum dots (QDs) have widely used in some biological and biomedical fields due to their unique and fascinating optical properties, meanwhile the interaction of QDs with biomolecules recently attract increasing attention. In this paper, we employed fluorescence correlation spectroscopy (FCS) to investigate the nonspecific interaction between CdTe QDs and bovine serum albumin (BSA) as a model, and evaluate their stoichiometric ratio and association constant. Our results documented that BSA was able to bind to CdTe QDs and form the QD–BSA complex by a 1:1 stoichiometric ratio. The association constant evaluated is 1.06 ± 0.14 × 107 M−1 in 0.01 M phosphate buffer (pH = 7.4). Furthermore, we found that QD–BSA complex dissociated with increase of ion strength, and we speculated that the interaction of CdTe QDs with BSA was mainly attributed to electrostatic attraction. Our preliminary results demonstrate that fluorescence correlation spectroscopy is an effective tool for investigation of the interaction between quantum dots (or nanoparticles) and biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alivisatos AP, Gu WW, Larabell C (2005) Quantum dots as cellular probes. Annu Rev Biomed Eng 7:55–76, doi:10.1146/annurev.bioeng.7.060804.100432

    Article  PubMed  CAS  Google Scholar 

  2. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544, doi:10.1126/science.1104274

    Article  PubMed  CAS  Google Scholar 

  3. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446, doi:10.1038/nmat1390

    Article  PubMed  CAS  Google Scholar 

  4. Wang Y, Tang Z, Kotov NA (2005) Bioapplication of nanosemiconductors. Mater Today 8(5):20–31, doi:10.1016/S1369-7021(05)00892-8

    Article  Google Scholar 

  5. Clapp AR, Medintz IL, Mattoussi H (2006) Forster resonance energy transfer investigations using quantum-dot fluorophores. Chem Phys Chem 7(1):47–57, doi:10.1002/cphc.200500217

    PubMed  CAS  Google Scholar 

  6. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15(1):79–86, doi:10.1021/bc034153y

    Article  PubMed  CAS  Google Scholar 

  7. Sun B, Xie W, Yi G, Chen D, Zhou Y, Cheng J (2001) Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. J Immunol Methods 249(1):85–89, doi:10.1016/S0022-1759(00)00331-8

    Article  PubMed  CAS  Google Scholar 

  8. Samia ACS, Chen X, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125(51):15736–15737, doi:10.1021/ja0386905

    Article  PubMed  CAS  Google Scholar 

  9. Pathak S, Choi SK, Arnheim N, Thompson ME (2001) Hydroxylated quantum dots as luminescent probes for in situ hybridization. J Am Chem Soc 123(17):4103–4104, doi:10.1021/ja0058334

    Article  PubMed  CAS  Google Scholar 

  10. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP et al (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21(1):41–46, doi:10.1038/nbt764

    Article  PubMed  CAS  Google Scholar 

  11. Parak WJ, Gerion D, Zanchet D, Woerz AS, Pellegrino T, Micheel C, Seitz SC, Williams M, Bruehl RE, Bryant Z, Bustamante C, Bertozzi CR, Alivisatos AP (2002) Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots. Chem Mater 14(5):2113–2119, doi:10.1021/cm0107878

    Article  CAS  Google Scholar 

  12. Nehilla BJ, Vu TQ, Desai TA (2005) Stoichiometry-dependent formation of quantum dot-antibody bioconjugates: a complementary atomic force microscopy and agarose gel electrophoresis study. J Phys Chem B 109(44):20724–20730, doi:10.1021/jp052613+

    Article  PubMed  CAS  Google Scholar 

  13. Ipe BI, Shukla A, Lu H, Zou B, Rehage H, Niemeyer CM (2006) Dynamic light-scattering analysis of the electrostatic interaction of hexahistidine-tagged cytochrome P450 enzyme with semiconductor quantum dots. Chem Phys Chem 7(1):1–8, doi:10.1002/cphc.200690000

    Google Scholar 

  14. Pons T, Uyeda HT, Medintz IL, Mattoussi H (2006) Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots. J Phys Chem B 110(41):20308–20316, doi:10.1021/jp065041h

    Article  PubMed  CAS  Google Scholar 

  15. Mamedova NN, Kotov NA, Rogach AL, Studer J (2001) Albumin-CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Lett 1(6):281–286, doi:10.1021/nl015519n

    Article  CAS  Google Scholar 

  16. Pinaud F, King D, Moore H-P, Weiss S (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 126(19):6115–6123 doi:10.1021/ja031691c

    Article  PubMed  CAS  Google Scholar 

  17. Ding S-Y, Jones M, Tucker MP, Nedeljkovic JM, Wall J, Simon MN et al (2003) Quantum dot molecules assembled with genetically engineered proteins. Nano Lett 3(11):1581–1585, doi:10.1021/nl034578t

    Article  CAS  Google Scholar 

  18. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sunder VC, Mikulee FV et al (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122(49):12142–12150, doi:10.1021/ja002535y

    Article  CAS  Google Scholar 

  19. Lindman S, Lynch I, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. effects of particle size and hydrophobicity. Nano Lett 7(4):914–920, doi:10.1021/nl062743+

    Article  PubMed  CAS  Google Scholar 

  20. Cedervall T, Lynch I, Linderman S, Berggard T, Thulin E, Nilsson H et al (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A 104(7):2050–2055, doi:10.1073/pnas.0608582104

    Article  PubMed  CAS  Google Scholar 

  21. Hess ST, Huang SH, Heikal AA, Webb WW (2002) Biological and chemical applications of fluorescence correlation spectroscopy: a review. Biochemistry 41(3):697–705, doi:10.1021/bi0118512

    Article  PubMed  CAS  Google Scholar 

  22. Haustein E, Schwille P (2003) Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29(2):153–166, doi:10.1016/S1046-2023(02)00306-7

    Article  PubMed  CAS  Google Scholar 

  23. Dong CQ, Qian HF, Fang NH, Ren JC (2006) Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy. J Phys Chem B 110(23):11069–11075, doi:10.1021/jp060279r

    Article  PubMed  CAS  Google Scholar 

  24. Wohland T, Friedrich K, Hovius R, Vogel H (1999) Study of ligand–receptor interactions by fluorescence correlation spectroscopy with different fluorophores: evidence that the homopentameric 5-hydroxytryptamine type 3as receptor binds only one ligand. Biochemistry 38(27):8671–8681, doi:10.1021/bi990366s

    Article  PubMed  CAS  Google Scholar 

  25. Schubert F, Zettl H, Hafner W, Krauss G, Krausch G (2003) Comparative thermodynamic analysis of DNA–protein interactions using surface Plasmon resonance and fluorescence correlation spectroscopy. Biochemistry 42(34):10288–10294, doi:10.1021/bi034033d

    Article  PubMed  CAS  Google Scholar 

  26. Ling CH, Gosch M, Lasser T, Wohland T (2006) Simultaneous multicolor fluorescence cross-correlation spectroscopy to detect higher order molecular interactions using single wavelength laser excitation. Biophys J 91(2):715–727, doi:10.1529/biophysj.105.074120

    Article  CAS  Google Scholar 

  27. Pack C-G, Aoki K, Taguchi H, Yoshida M, Kinjo M, Tamura M (2000) Effect of electrostatic interactions on the binding of charged substrate to GroEL studied by highly sensitive fluorescence correlation spectroscopy. Biochem Biophys Res Commun 267(1):300–304, doi:10.1006/bbrc.1999.1864

    Article  PubMed  CAS  Google Scholar 

  28. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW et al (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436, doi:10.1126/science.1083780

    Article  PubMed  CAS  Google Scholar 

  29. Doose S, Tsay J, Pinaud F, Weiss S (2005) Comparison of photophysical and colloidal properties of biocompatible semiconductor nanocrystals using fluorescence correlation spectroscopy. Anal Chem 77(7):2235–2242, doi:10.1021/ac050035n

    Article  PubMed  CAS  Google Scholar 

  30. Yao J, Larson DR, Vishwasrao HD, Zipfel WR, Webb WW (2005) Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution. Proc Natl Acad Sci USA 102(40):14284–14298, doi:10.1073/pnas.0506523102

    Article  PubMed  CAS  Google Scholar 

  31. Tsay JM, Doose S, Pinaud F, Weiss S (2005) Enhancing the photoluminescence of peptide-coated nanocrystals with shell composition and UV irradiation. J Phys Chem B 109(5):1669–1674, doi:10.1021/jp046828f

    Article  PubMed  CAS  Google Scholar 

  32. Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, Keller S, Raedler J, Natile G, Parak WJ (2004) Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett 4(4):703–707, doi:10.1021/nl035172j

    Article  CAS  Google Scholar 

  33. Li L, Qian HF, Ren JC (2005) Rapid synthesis of highly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiation with controllable temperature. Chem Commun (Camb) 528–530, doi:10.1039/b412686f

  34. Li L, Qian HF, Fang NH, Ren JC (2006) Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions. J Lumin 116(1):59–66, doi:10.1016/j.jlumin.2005.03.001

    Article  CAS  Google Scholar 

  35. Zhang PD, Li L, Dong CQ, Qian HF, Ren JC (2005) Sizes of water-soluble luminescent quantum dots measured by fluorescence correlation spectroscopy. Anal Chim Acta 546(1):46–51, doi:10.1016/j.aca.2005.05.034

    Article  CAS  Google Scholar 

  36. Wang KL, Qiu X, Dong CQ, Ren JC (2007) Single-molecule technology for rapid detection of dna hybridization based on resonance light scattering of gold nanoparticles. Chem Bio Chem 8(10):1126–1129, doi:10.1002/cbic.200700174

    PubMed  CAS  Google Scholar 

  37. Meseth U, Wohland T, Rigler R, Vogel H (1999) Resolution of fluorescence correlation measurements. Biophys J 76(3):1619–1631

    Article  PubMed  CAS  Google Scholar 

  38. Goldman ER, Balighian ED, Mattoussi H, Kuno MK, Mauro JM, Tran PT et al (2002) Avidin: a natural bridge for quantum dot-antibody conjugates. J Am Chem Soc 124(22):6378–6382, doi:10.1021/ja0125570

    Article  PubMed  CAS  Google Scholar 

  39. Ha TH, Jeong JY, Chung BH (2005) Immobilization of hexa-arginine tagged esterase onto carboxylated gold nanoparticles. Chem Commun (Camb) 3959–3961, doi:10.1039/b504184h

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 20675052, 20727005) and National High-Tech R and D Program (2006AA03Z324)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jicun Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, L., Dong, C., Sang, F. et al. Studies on Interaction of CdTe Quantum Dots with Bovine Serum Albumin Using Fluorescence Correlation Spectroscopy. J Fluoresc 19, 151–157 (2009). https://doi.org/10.1007/s10895-008-0396-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0396-0

Keywords

Navigation