Skip to main content
Log in

Diffusion Coefficients of Several Rhodamine Derivatives as Determined by Pulsed Field Gradient–Nuclear Magnetic Resonance and Fluorescence Correlation Spectroscopy

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Rhodamine derivatives are popular, photostable fluorophores that are used in a number of fluorescent based techniques, including fluorescence correlation spectroscopy (FCS). Indeed, in FCS, both rhodamine 6G (R6G) and rhodamine 110 (R110) are used as calibration standards to determine the dimensions of the instrument confocal volume. In spite of a requirement for precise values of the diffusion coefficients, literature values are scarce and vary over an order of magnitude. In this paper, the diffusion coefficients of four rhodamine fluorophores (rhodamine 6G (R6G), rhodamine B (RB), rhodamine 123 (R123), rhodamine 110 (R110)) were determined by pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectrometry and then validated by comparison with fluorescence correlation spectroscopy. With the objective of validating the FCS calibration, diffusion coefficients of several dextrans and a polystyrene nanoparticle were also determined and compared with literature values or theoretical values that were based upon the Stoke–Einstein equation. The work presented here lead us to conclude that the diffusion coefficients for R6G and R110 have generally been underestimated in the literature. We propose revised values of 4.4 × 10−10 m2 s−1 for R110 and 4.0 × 10−10 m2 s−1 for R6G. Using the revised D value for R110 to calibrate the FCS instrument, diffusion coefficients have then been systematically determined for different conditions of pH, ionic strength and concentration. To correct for differences due to solvent effects (D2O vs. H2O), an isotopic correction factor, \({{D_{{\text{D}}_2 {\text{O}}} } \mathord{\left/ {\vphantom {{D_{{\text{D}}_2 {\text{O}}} } {D_{{\text{H}}_2 {\text{O}}} }}} \right. \kern-\nulldelimiterspace} {D_{{\text{H}}_2 {\text{O}}} }}\) of 1.23, was determined from both FCS and from the solvent auto-diffusion coefficients obtained by NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Krichevsky O, Bonnet G (2002) Fluorescence correlation spectroscopy: the technique and its applications. Rep Prog Phys 65:251–297

    Article  CAS  Google Scholar 

  2. Leng X, Starchev K, Buffle J (2001) Applications of fluorescence correlation spectroscopy: measurement of size–mass relationship of native and denatured schizophyllan. Biopolymers 59:290–299

    Article  PubMed  CAS  Google Scholar 

  3. Meunier F, Wilkinson KJ (2002) Non-perturbing fluorescent labeling of polysaccharides. Biomacromolecules 3:857–864

    Article  PubMed  CAS  Google Scholar 

  4. Leng X, Startchev K, Buffle J (2002) Application of fluorescence correlation spectroscopy: a study of flocculation of rigid rod-like biopolymer (schizophyllan) and colloidal particles. J Colloid Interface Sci 251:64–72

    Article  PubMed  CAS  Google Scholar 

  5. Avena MJ, Wilkinson KJ (2002) Disaggregation kinetics of a peat humic acid: mechanism and pH effects. Environ Sci Technol 36:5100–5105

    Article  PubMed  CAS  Google Scholar 

  6. Fatin-Rouge N, Buffle J (2007) Study of environmental systems by means of fluorescence correlation spectroscopy. In: Wilkinson KJ, Lead JR (eds) IUPAC series on analytical and physical chemistry of environmental systems. Wiley, Chichester, pp 507–554

    Google Scholar 

  7. Rani SA, Pitts B, Stewart PS (2005) Rapid diffusion of fluorescent tracers into Staphylococcus epidermidis biofilms visualized by time lapse microscopy. Antimicrob Agents Chemother 49:728–732

    Article  PubMed  CAS  Google Scholar 

  8. Stroh M, Zipfel WR, Williams RM, Webb WW, Saltzman WM (2003) Diffusion of nerve growth factor in rat striatum as determined by multiphoton microscopy. Biophys J 85:581–588

    PubMed  CAS  Google Scholar 

  9. Roumi M, Kwong E, Deghenghi R, Locatelli V, Marleau S, Du Souich P, Beliveau R, Ong H (2001) Permeability of the peptidic GH secretagogues hexarelin and EP 51389, across rat jejunum. Peptides (New York, NY, United States) 22:1129–1138

    CAS  Google Scholar 

  10. Dos Santos Silva AL, Joekes I (2005) Rhodamine B diffusion in hair as a probe for structural integrity. Colloids Surf, B Biointerfaces 40:19–24

    Article  CAS  Google Scholar 

  11. Stroh M, Saltzman WM (2003) Diffusion of neurotrophins and conjugates in brain tissue as determined by multiphoton microscopy. AIChE Annual Meeting, Conference Proceedings, San Francisco, CA, United States, Nov. 16–21:2003:103–111

  12. Mukhopadhyay A, Zhao J, Bae SC, Granick S (2002) Contrasting friction and diffusion in molecularly thin confined films. Phys Rev Lett 89:136103/136101–136103/136104

    Google Scholar 

  13. Thompson NL (1991) Fluorescence correlation spectroscopy. Topics in Fluorescence Spectroscopy 1:337

    Article  CAS  Google Scholar 

  14. Fatin-Rouge N, Milon A, Buffle J, Goulet RR, Tessier A (2003) Diffusion and partitioning of solutes in agarose hydrogels: the relative influence of electrostatic and specific interactions. J Phys Chemistry B, 107:12126–12137

    Article  CAS  Google Scholar 

  15. Dare-Doyen S, Doizi D, Guilbaud P, Djedaieni-Pilard F, Perly B, Millie P (2003) Dimerization of xanthene dyes in water: experimental studies and molecular dynamic simulations. J Phys Chemistry B, 107:13803–13812

    Article  CAS  Google Scholar 

  16. Ilich P, Mishra PK, Macura S, Burghardt TP (1996) Direct observation of rhodamine dimer structures in water. Spectrochim Acta Part A Mol Biomol Spectrosc 52A:1323–1330

    Article  CAS  Google Scholar 

  17. Sariri R, Zakerhamidi MS, Baharpaima K, Ghanadzadeh A (2004) The anion effect and molecular association of rhodamine dyes in isotropic and anisotropic solvents. J Mol Liq 115:55–61

    Article  CAS  Google Scholar 

  18. Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Fluorescence correlation spectroscopy conceptual basis and theory. II. Biopolymers 13:29–61

    Article  PubMed  CAS  Google Scholar 

  19. Mueller JD, Gratton E (2003) High-pressure fluorescence correlation spectroscopy. Biophys J 85:2711–2719

    CAS  Google Scholar 

  20. Price KE, Lucas LH, Larive CK (2004) Analytical applications of NMR diffusion measurements. Anal Bioanalytical Chemistry 378:1405–1407

    Article  CAS  Google Scholar 

  21. Magde D, Elson EL, Webb WW (1972) Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys Rev Let 29:705

    Article  CAS  Google Scholar 

  22. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  23. Price WS (1997) Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: part I. Concepts Magn Reson 9:299–336

    Article  CAS  Google Scholar 

  24. Antalek B (2002) Using pulsed gradient spin echo NMR for chemical mixture analysis: how to obtain optimum results. Concepts Magn Reson 14:225–258

    Article  CAS  Google Scholar 

  25. Hardy EH, Zygar A, Zeidler MD, Holz M, Sacher FD (2001) Isotope effect on the translational and rotational motion in liquid water and ammonia. J Chem Phys 114:3174–3181

    Article  CAS  Google Scholar 

  26. Svishchev IM, Kusalik PG (1994) Dynamics in liquid water, water-d2, and water-t2: a comparative simulation study. J Phys Chem 98:728–733

    Article  CAS  Google Scholar 

  27. Hernandez de la Pena L, Kusalik PG (2004) Quantum effects in light and heavy liquid water: a rigid-body centroid molecular dynamics study. J Chem Phys 121:5992–6002

    Article  PubMed  CAS  Google Scholar 

  28. Pluen A, Netti PA, Jain RK, Berk DA (1999) Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. Biophys J 77:542–552

    Article  PubMed  CAS  Google Scholar 

  29. Rigler R, Grasselli P, Ehrenberg M (1979) Fluorescence correlation spectroscopy and application to the study of Brownian motion of biopolymers. Phys Scr 19:486–490

    Article  CAS  Google Scholar 

  30. Gell C, Brockwell DJ, Beddard GS, Radford SE, Kalverda AP, Smith DA (2001) Accurate use of single molecule fluorescence correlation spectroscopy to determine molecular diffusion times. Single Molecules 2:177–181

    Article  CAS  Google Scholar 

  31. Jones MC, Nassimbene RD, Wolfe JD (1996) Mixing and dispersion measurements on packed bed flows using a fiber-optic probe array. Eng Science 51:1009

    CAS  Google Scholar 

  32. Yu J-S, Zhou T-Y (2001) The electrochemistry and thin-layer luminescence spectroelectrochemistry of rhodamine 6G at a 4,4¢-bipyridine-modified gold electrode. J Electroanal Chem 504:89–95

    Article  CAS  Google Scholar 

  33. Culbertson CT, Jacobson SC, Ramsey JM (2002) Diffusion coefficient measurements in microfluidic devices. Talanta 56:365–373

    Article  PubMed  CAS  Google Scholar 

  34. Fister JC III, Jacobson SC, Davis LM, Ramsey JM (1998) Counting single chromophore molecules for ultrasensitive analysis and separations on microchip devices. Anal Chem 70:431–437

    Article  CAS  Google Scholar 

  35. Hansen RL, Zhu XR, Harris JM (1998) Fluorescence correlation spectroscopy with patterned photoexcitation for measuring solution diffusion coefficients of robust fluorophores. Anal Chem 70:1281–1287

    Article  CAS  Google Scholar 

  36. Austin JM, Harrison IR, Quickenden TI (1986) Electrochemical and photoelectrochemical properties of rhodamine B. J Phys Chem 90:1839–1843

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Cederic Malveau (Université de Montréal) for assistance with the NMR measurements and advice. Funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Wilkinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gendron, PO., Avaltroni, F. & Wilkinson, K.J. Diffusion Coefficients of Several Rhodamine Derivatives as Determined by Pulsed Field Gradient–Nuclear Magnetic Resonance and Fluorescence Correlation Spectroscopy. J Fluoresc 18, 1093–1101 (2008). https://doi.org/10.1007/s10895-008-0357-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0357-7

Keywords

Navigation