Skip to main content

Tracer Mobility in Aqueous Poly(N-isopropylacrylamide) Grafted Networks: Effect of Interactions and Permanent Crosslinks

  • Conference paper
  • First Online:
Intelligent Hydrogels

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 140))

Abstract

Using fluorescence correlation spectroscopy, we measured the translational mobility of three molecular tracers in aqueous poly(N-isopropylacrylamide) (PNIPAAm) grafted networks, under good solvency conditions. The influence of permanent crosslinks and the interaction between polymer and tracers was revealed. In contrast to the athermal tracer Alexa 647, we observed strong deviation from single Fickian diffusion for two interacting tracers, Alexa 488 and Rhodamine 6G. The dynamics of the latter tracers were represented by a double Fickian diffusion in PNIPAAm solutions and hydrogels for volume fractions up to 30 %. A different slowdown was observed for the slow process in hydrogels and solutions. For the hydrogels, it becomes virtually concentration independent above about 10 %, whereas for solutions it increases below this threshold with PNIPAAm concentration. A pure crowding effect, free of interactions, was observed for both Alexa 647 and for the fast diffusion process of the interacting tracers, whereas their slow process was attributed to the interaction between tracer and polymer. The elucidation of effects due to crowding as well as due to the strength and nature of interactions on the molecular diffusion in hydrogels is needed for both, fundamental and practical perspectives, as for example in biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mason TG, Weitz DA (1995) Phys Rev Lett 74:1250–1253

    Article  CAS  Google Scholar 

  2. Schwille P, Korlach J, Webb WW (1999) Cytometry 36:176–182

    Article  CAS  Google Scholar 

  3. Wachsmuth M, Waldeck W, Langowski J (2000) J Mol Biol 298:677–689

    Article  CAS  Google Scholar 

  4. Pramanik A (2004) Curr Pharm Biotechnol 5:205–212

    Article  CAS  Google Scholar 

  5. Grunwald D, Cardoso MC, Leonhardt H, Buschmann V (2005) Curr Pharm Biotechnol 6:381–386

    Article  CAS  Google Scholar 

  6. Zhang L, Granick S (2005) Proc Natl Acad Sci U S A 102:9118–9121

    Article  CAS  Google Scholar 

  7. Bacia K, Kim SA, Schwille P (2006) Nat Meth 3:83–89

    Article  CAS  Google Scholar 

  8. Cherdhirankorn T, Best A, Koynov K, Peneva K, Muellen K, Fytas G (2009) J Phys Chem B 113:3355–3359

    Article  CAS  Google Scholar 

  9. Cherdhirankorn T, Floudas G, Butt HJ, Koynov K (2009) Macromolecules 42:9183–9189

    Article  CAS  Google Scholar 

  10. Cherdhirankorn T, Harmandaris V, Juhari A, Voudouris P, Fytas G, Kremer K, Koynov K (2009) Macromolecules 42:4858–4866

    Article  CAS  Google Scholar 

  11. Wang B, Anthony SM, Bae SC, Granick S (2009) Proc Natl Acad Sci U S A 106:15160–15164

    Article  CAS  Google Scholar 

  12. Szymanski J, Weiss M (2009) Phys Rev Lett 103:038102–038104

    Article  Google Scholar 

  13. Mathias E, Aponte J, Kornfield J, Ba Y (2010) Colloid Polym Sci 288:1655–1663

    Article  CAS  Google Scholar 

  14. Rusu L, Lumma D, Rädler JO (2010) Macromol Biosci 10:1465–1472

    Article  CAS  Google Scholar 

  15. Susoff M, Oppermann W (2010) Macromolecules 43:9100–9107

    Article  CAS  Google Scholar 

  16. Zustiak SP, Boukari H, Leach JB (2010) Soft Matter 6:3609–3618

    Article  CAS  Google Scholar 

  17. Kalwarczyk T, Ziȩbacz N, Bielejewska A, Zaboklicka E, Koynov K, Szymański J d, Wilk A, Patkowski A, Gapiński J, Butt H-J r, Hołyst R (2011) Nano Lett 11:2157–2163

    Article  CAS  Google Scholar 

  18. Felderhof BU (2011) J Chem Phys 134

    Google Scholar 

  19. Cai LH, Panyukov S, Rubinstein M (2011) Macromolecules 44:7853–7863

    Article  CAS  Google Scholar 

  20. Hellmann M, Klafter J, Heermann DW, Weiss M (2011) J Phys Condens Matter 23:234113

    Article  Google Scholar 

  21. Ochab-Marcinek A, Holyst R (2011) Soft Matter 7:7366–7374

    Article  CAS  Google Scholar 

  22. Eliazar I, Klafter J (2011) J Phys A Math Theor 44:405006

    Article  Google Scholar 

  23. Ernst D, Hellmann M, Kohler J, Weiss M (2012) Soft Matter 8:4886–4889

    Article  CAS  Google Scholar 

  24. Chun Jen H, Dostalek J, Knoll W (2010) Biosens Bioelectron 26:1425–1431

    Article  Google Scholar 

  25. Mateescu A, Yi W, Dostalek J, Jonas U (2012) Membranes 2:40–6969

    Article  CAS  Google Scholar 

  26. Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung U-i (2008) Macromolecules 41:5379–5384

    Article  CAS  Google Scholar 

  27. Hao J, Weiss RA (2011) Macromolecules 44:9390–9398

    Article  CAS  Google Scholar 

  28. Sugimura A, Asai M, Matsunaga T, Akagi Y, Sakai T, Noguchi H, Shibayama M (2013) Polym J, 45(3), 300–306.

    Article  CAS  Google Scholar 

  29. Reinhart CT, Peppas NA (1984) J Membr Sci 18:227–239

    Article  CAS  Google Scholar 

  30. Ritger PL, Peppas NA (1987) J Control Release 5:37–42

    Article  CAS  Google Scholar 

  31. Wu Y, Joseph S, Aluru NR (2009) J Phys Chem B 113:3512–3520

    Article  CAS  Google Scholar 

  32. Tabatabaei F, Lenz O, Holm C (2011) Colloid Polym Sci 289:523–534

    Article  CAS  Google Scholar 

  33. Modesti G, Zimmermann B, Borsch M, Herrmann A, Saalwachter K (2009) Macromolecules 42:4681–4689

    Article  CAS  Google Scholar 

  34. Raccis R, Roskamp R, Hopp I, Menges B, Koynov K, Jonas U, Knoll W, Butt HJ, Fytas G (2011) Soft Matter 7:7042–7053

    Article  CAS  Google Scholar 

  35. Michelman-Ribeiro A, Boukari H, Nossal R, Horkay F (2005) Macromol Symp 227:221–230

    Article  Google Scholar 

  36. Seiffert S, Oppermann W (2008) Polymers 49:4115–4126

    Article  CAS  Google Scholar 

  37. Junk MJN, Jonas U, Hinderberger D (2008) Small 4:1485–1493

    Article  CAS  Google Scholar 

  38. Ward MA, Georgiou TK (2011) Polymers 3:1215–1242

    Article  CAS  Google Scholar 

  39. Gianneli M, Roskamp RF, Jonas U, Loppinet B, Fytas G, Knoll W (2008) Soft Matter 4:1443–1447

    Article  CAS  Google Scholar 

  40. Rigler R, Elson ES (2001) Fluorescence correlation spectroscopy: theory and applications. Springer, New York

    Book  Google Scholar 

  41. Schwille P, Meyer-Almes FJ, Rigler R (1997) Biophys J 72:1878–1886

    Article  CAS  Google Scholar 

  42. Haustein E, Schwille P (2003) Methods 29:153–166

    Article  CAS  Google Scholar 

  43. Michelman-Ribeiro A, Mazza D, Rosales T, Stasevich TJ, Boukari H, Rishi V, Vinson C, Knutson JR, McNally JG (2009) Biophys J 97:337–346

    Article  CAS  Google Scholar 

  44. Koynov K, Butt H-J (2012) Curr Opin Colloid Interface Sci 17:377–387

    Article  CAS  Google Scholar 

  45. Lumma D, Keller S, Vilgis T, Rädler JO (2003) Phys Rev Lett 90:218301

    Article  CAS  Google Scholar 

  46. Zustiak SP, Nossal R, Sackett DL (2011) Biophys J 101:255–264

    Article  CAS  Google Scholar 

  47. Jia P, Yang Q, Gong Y, Zhao J (2012) J Chem Phys 136:084904

    Article  Google Scholar 

  48. Gianneli M, Beines PW, Roskamp RF, Koynov K, Fytas G, Knoll W (2007) J Phys Chem C 111:13205–13211

    Article  CAS  Google Scholar 

  49. Toma K, Dostalek J, Knoll W (2011) Opt Express 19:11090–11099

    Article  CAS  Google Scholar 

  50. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Eur J Pharm Biopharm 57:19–34

    Article  CAS  Google Scholar 

  51. Gear ARL (1974) J Biol Chem 249:3628–3637

    CAS  Google Scholar 

  52. http://www.picoquant.com/technotes/appnote_diffusion_coefficients.pdf

  53. Guigas G, Weiss M (2008) Biophys J 94:90–9494

    Article  CAS  Google Scholar 

  54. Fritsch CC, Langowski J (2010) J Chem Phys 133:025101–025111

    Article  Google Scholar 

  55. Sokolov IM (2012) Soft Matter 8:9043–9052

    Article  CAS  Google Scholar 

  56. Wirth MJ, Ludes MD, Swinton DJ (2001) Appl Spectrosc 55:663–669

    Article  CAS  Google Scholar 

  57. Vagias A, Raccis R, Koynov K, Jonas U, Butt H-J, Fytas G, Košovan P, Lenz O, Holm C (2013) Complex tracer diffusion dynamics in polymer solutions. Phys Rev Lett 111 (8):088301. doi:10.1103/PhysRevLett.111.088301

    Google Scholar 

  58. Mahurin SM, Dai S, Barnes MD (2003) J Phys Chem B 107:13336–13340

    Article  CAS  Google Scholar 

  59. Enderlein J (2012) Phys Rev Lett 108:108101

    Article  Google Scholar 

  60. Gennes PGd (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  61. Echeverria C, Peppas NA, Mijangos C (2012) Soft Matter 8:337–346

    Article  CAS  Google Scholar 

  62. Michelman-Ribeiro FHA, Nossal R, Boukari H (2007) BioMacromolecules 8:1595–1600

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the Deutsche Forschungsgemeinschaft for financial support in the framework of SPP1259 “Intelligente Hydrogele”. P.K. acknowledges support from grant “LK21302 Navrat” from the Czech Minitry of Education. We would like to thank Katja Nilles for synthesis of the polymer, Andreas Best and Gabi Hermann for technical support, and Uli Jonas for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Fytas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Vagias, A., Košovan, P., Holm, C., Butt, HJ., Koynov, K., Fytas, G. (2013). Tracer Mobility in Aqueous Poly(N-isopropylacrylamide) Grafted Networks: Effect of Interactions and Permanent Crosslinks. In: Sadowski, G., Richtering, W. (eds) Intelligent Hydrogels. Progress in Colloid and Polymer Science, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-01683-2_5

Download citation

Publish with us

Policies and ethics