Skip to main content
Log in

A Fluorescence Analysis of ANS Bound to Bovine Serum Albumin: Binding Properties Revisited by Using Energy Transfer

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Determination of binding parameters such as the number of ligands and the respective binding constants require a considerable number of experiments to be performed. These involve accurate determination of either free and/or bound ligand concentration irrespective of the measurement technique applied. Then, an appropriate theoretical model is used to fit the experimental data, and to extract the binding parameters. In this work, the interaction between bovine serum albumin (BSA) and 1-anilino-8-naphthalene sulphonate (ANS) is revisited. Using steady state fluorescence spectroscopy, the binding isotherm of BSA/ANS was obtained applying the Halfman–Nishida approach. The binding parameters, site number, and binding site association constants, were determined from the stoichiometric Adair model and Job’s plot. The binding parameters obtained were then correlated to the distance of the respective binding site to the tryptophan residues using the energy transfer technique. This approach, that uses both tryptophans independently from each other, is presented as a tool to help understand the binding mechanism of the albumin fluorescent complex. The results show that ANS molecules bind to BSA in up to five different binding sites. Energy transfer from the tryptophan residues to the BSA/ANS complex shows that the four highest affinity binding sites (>104 M−1) are located at a reasonably close distance (18–27 Å) to at least one of two tryptophan residues, while the lowest affinity binding site (~104 M−1) is located over 34 Å away from the both tryptophans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. He XM, Carter DC (1992) Atomic-structure and chemistry of human serum-albumin. Nature 358:209–215

    Article  PubMed  CAS  Google Scholar 

  2. Peters T (1985) Serum albumin. Adv Protein Chem 37:161–245

    PubMed  CAS  Google Scholar 

  3. Kragh-Hansen U, Chuang VTG, Otagiri M (2002) Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Bio Pharm Bull 25:695–704

    Article  CAS  Google Scholar 

  4. Harding SE, Chowdhry BZ (2001) Protein-ligand interactions: structure and spectroscopy. Oxford University Press, New York

    Google Scholar 

  5. Pacifici GM, Viani A (1992) Methods of determining plasma and tissue binding of drugs—pharmacokinetic consequences. Clin Pharmacokinet 23:449–468

    PubMed  CAS  Google Scholar 

  6. Georgiou ME, Georgiou CA, Koupparis MA (1999) Automated flow injection gradient technique for binding studies of micromolecules to proteins using potentiometric sensors: application to bovine serum albumin with anilinonaphthalenesulfonate probe and drugs. Anal Chem 71:2541–2550

    Article  PubMed  CAS  Google Scholar 

  7. Birdsall B, King RW, Wheeler MR, Lewis CA, Goode SR, Dunlap RB, Roberts GCK (1983) Correction for light-absorption in fluorescence studies of protein-ligand interactions. Anal Biochem 132:353–361

    Article  PubMed  CAS  Google Scholar 

  8. Eftink MR (1997) Fluorescence methods for studying equilibrium macromolecule-ligand interactions. Meth Enz 278:221–257

    Article  CAS  Google Scholar 

  9. Weber G, Young LB (1964) Fragmentation of bovine serum albumin by pepsin.1. Origin of acid expansion of albumin molecule. J Biol Chem 239:1415–1423

    PubMed  CAS  Google Scholar 

  10. Cardamone M, Puri NK (1992) Spectrofluorometric assessment of the surface hydrophobicity of proteins. Biochem J 282:589–593

    PubMed  CAS  Google Scholar 

  11. Haskard CA, Li-Chan ECY (1998) Hydrophobicity of bovine serum albumin and ovalbumin determined using uncharged (PRODAN) and anionic (ANS(-)) fluorescent probes. J Agric Food Chem 46:2671–2677

    Article  CAS  Google Scholar 

  12. Hazra P, Chakrabarty D, Chakraborty A, Sarkar N (2004) Probing protein-surfactant interaction by steady state and time-resolved fluorescence spectroscopy. Biochem Biophys Res Commun 314:543–549

    Article  PubMed  CAS  Google Scholar 

  13. Bagatolli LA, Kivatinitz SC, Fidelio GD (1996) Interaction of small ligands with human serum albumin IIIA subdomain. How to determine the affinity constant using an easy steady state fluorescent method. J Pharm Sci 85:1131–1132

    Article  PubMed  CAS  Google Scholar 

  14. Matulis D, Lovrien R (1998) 1-anilino-8-naphthalene sulfonate anion-protein binding depends primarily on ion pair formation. Biophys J 74:422–429

    PubMed  CAS  Google Scholar 

  15. Naik DV, Paul WL, Threatte RM, Schulman SG (1975) Fluorometric-determination of drug-protein association constants—binding of 8-anilino-1-naphthalenesulfonate by bovine serum-albumin. Anal Chem 47:267–270

    Article  CAS  Google Scholar 

  16. Huang CY (1982) Determination of binding stoichiometry by the continuous variation method: the job plot. Meth Enz 87:509–525

    CAS  Google Scholar 

  17. GlaxoSmithkline. http://www.expasy.org/spdbv/

  18. van Holde KE, Johnson WC, Ho PS (1998) Principles of physical biochemistry. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  19. Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  20. Fletcher JE, Spector AA, Ashbrook JD (1970) Analysis of macromolecule-ligand binding by determination of stepwise equilibrium constants. Biochem 9:4580–4587

    Article  CAS  Google Scholar 

  21. Klotz IM (1974) Protein interactions with small molecules. Acc Chem Res 7:162–168

    Article  CAS  Google Scholar 

  22. Klotz IM, Hunston DL (1984) Mathematical models for ligand-receptor binding. Real sites, ghost sites. J Biol Chem 259:60–62

    Google Scholar 

  23. Halfman CJ, Nishida T (1972) Method for measuring the binding of small molecules to proteins from binding-induced alterations of physical–chemical properties. Biochem 11:3493–3498

    Article  CAS  Google Scholar 

  24. Lipskier JF, Tran-Thi TH (1993) Supramolecular assemblies of porphyrins and phthalocyanines bearing oppositely charged substituents—1st evidence of heterotrimer formation. Inorg Chem 32:722–731

    Article  CAS  Google Scholar 

  25. De S, Girigoswami A, Das S (2004) Fluorescence probing of albumin–surfactant interaction. J Coll Int Sci 285:562–573

    Article  CAS  Google Scholar 

  26. Brocklehurst JR, Freedman RB, Hancock DJ, Radda GK (1970) Membrane studies with polarity-dependant and excimer-forming fluorescent probes. Biochem J 116:721–731

    PubMed  CAS  Google Scholar 

  27. Axelsson I (1978) Characterization of proteins and other macromolecules by agarose-gel chromatography. J Chromatog 152:21–32

    Article  CAS  Google Scholar 

  28. Putnam FW (1975) The plasma proteins: structure, function and genetic control, vol 1, 2nd edn. Academic, New York

    Google Scholar 

  29. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Academic, New York

    Google Scholar 

  30. Moens PDJ, Helms MK, Jameson DM (2004) Detection of tryptophan to tryptophan energy transfer in proteins. Protein Journal 23:79–83

    Article  PubMed  CAS  Google Scholar 

  31. Petitpas I, Grune T, Bhattacharya AA, Curry S (2001) Crystal structures of human serum albumin complexed with monounsaturated and polyunsaturated fatty acids. J Mol Biol 314:955–960 (PDB ID: 1gnj)

    Article  PubMed  CAS  Google Scholar 

  32. Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S (2005) Structural basis of the drug-binding specificity of human serum albumin. J Mol Bio 353:38–52

    Article  CAS  Google Scholar 

  33. Bagatolli LA, Kivatinitz SC, Aguilar F, Soto MA, Sotomayor P, Fidelio GD (1996) Two distinguishable fluorescent modes of 1-anilino-8-naphtalenesulfonate bound to human albumin. J Fluoresc 6:33–40

    Article  CAS  Google Scholar 

  34. Togashi DM, Ryder AG (2006) Time-resolved fluorescence studies on bovine serum albumin denaturation process. J Fluoresc 16:153–160

    Article  PubMed  CAS  Google Scholar 

  35. Teale FWJ (1960) The ultraviolet fluorescence of proteins in neutral solution. Biochem J 76:381–388

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Science Foundation Ireland under Grant number (02/IN.1M231)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denisio M. Togashi.

Appendix

Appendix

The critical radius, R 0, in Förster resonance energy transfer is defined as the distance at which the efficiency of energy transfer is equal to 50%. It can be calculated using the following expression [29]

$$R_{\text{0}} = {\text{9780}} \times \left( {\kappa ^{\text{2}} \phi _{\text{D}}^{\text{0}} n^{ - {\text{4}}} J\left( \lambda \right)} \right)^{{{\text{1}} \mathord{\left/ {\vphantom {{\text{1}} 6}} \right. \kern-\nulldelimiterspace} 6}} $$
(9)

with R 0 in Å, κ 2 is the orientation factor (two-thirds assumed) describing the relative orientation in space of the transition dipoles of the donor (Trp residues) and acceptor (ANS), and \(\phi _{\text{D}}^{\text{0}} \) is the donor fluorescence quantum yield in the absence of the acceptor. In the case of tryptophans in BSA this value is 0.15 [35]. A value of 1.33 is assumed for the refractive index, n, of the solution. The spectral overlap integral J(λ) between the donor emission spectrum and the acceptor absorbance spectrum was approximated by:

$$J\left( \lambda \right) = {{\int {F_{\text{D}} \left( \lambda \right)\varepsilon _{\text{A}} \left( \lambda \right)\lambda ^{\text{4}} \operatorname{d} \lambda } } \mathord{\left/ {\vphantom {{\int {F_{\text{D}} \left( \lambda \right)\varepsilon _{\text{A}} \left( \lambda \right)\lambda ^{\text{4}} \operatorname{d} \lambda } } {\int {F_{\text{D}} \left( \lambda \right)\operatorname{d} \lambda } }}} \right. \kern-\nulldelimiterspace} {\int {F_{\text{D}} \left( \lambda \right)\operatorname{d} \lambda } }}$$
(10)

where, F D(λ) is the normalized fluorescence spectrum of the donor and ε A(λ) is the absorption molar extinction coefficient.

The distance between the donor and acceptor R DA can be determined by measuring the change in donor fluorescence. The donor fluorescence intensity was measured in the absence (I D) and in the presence of acceptor (I DA). Then, FRET efficiency can be calculated using the following expressions:

$$E{\text{ = 1}} - \frac{{I_{{\text{DA}}} }}{{I_{\text{D}} }}$$
(11)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Togashi, D.M., Ryder, A.G. A Fluorescence Analysis of ANS Bound to Bovine Serum Albumin: Binding Properties Revisited by Using Energy Transfer. J Fluoresc 18, 519–526 (2008). https://doi.org/10.1007/s10895-007-0294-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0294-x

Keywords

Navigation