Skip to main content

Advertisement

Log in

Two-Photon Excited Fluorescence Energy Transfer: A Study Based on Oligonucleotide Rulers

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The use of two-photon excitation of fluorescence for detection of fluorescence resonance energy transfer (FRET) was studied for a selected fluorescent donor–acceptor pair. A method based on labeled DNA was developed for controlling the distance between the donor and the acceptor molecules. The method consists of hybridization of fluorescent oligonucleotides to a complementary single-stranded target DNA. As the efficiency of FRET is strongly distance dependent, energy transfer does not occur unless the fluorescent oligonucleotides and the target DNA are hybridized. A high degree of DNA hybridization and an excellent FRET efficiency were verified with one-photon excited fluorescence studies. Excitation spectra of fluorophores are usually wider in case of two-photon excitation than in the case of one-photon excitation [1]. This makes the selective excitation of donor difficult and might cause errors in detection of FRET with two-photon excited fluorescence. Different techniques to analyze the FRET efficiency from two-photon excited fluorescence data are discussed. The quenching of the donor fluorescence intensity turned to be the most consistent way to detect the FRET efficiency. The two-photon excited FRET is shown to give a good response to the distance between the donor and the acceptor molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu C, Zipfel W, Shear JB, Williams RM, Webb WW (1996) Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci USA 93:10763–10768

    Article  PubMed  CAS  Google Scholar 

  2. Stryer L, Haugland RP (1967) Energy transfer: A spectroscopic ruler. Proc Natl Acad Sci USA 58:719–726

    Article  PubMed  CAS  Google Scholar 

  3. Wu P, Brand L (1994) Resonance energy transfer: Methods and applications. Anal Biochem 218:1–13

    Article  PubMed  CAS  Google Scholar 

  4. Clegg RM (1995) Fluorescence resonance energy transfer. Curr Opin Biotechnol 6:103–110

    Article  PubMed  CAS  Google Scholar 

  5. Lakowicz Joseph R (1991) Topics in fluorescence spectroscopy. Principles 2

  6. Kikuchi K, Takakusa H, Nagano T (2004) Recent advances in the design of small molecule-based FRET sensors for cell biology. TrAC Trends Anal Chem 23:407–415

    Article  CAS  Google Scholar 

  7. Moens PD, Helms MK, Jameson DM (2004) Detection of tryptophan to tryptophan energy transfer in proteins. Protein J 23:79–83

    Article  PubMed  CAS  Google Scholar 

  8. Norman DG, Grainger RJ, Uhrin D, Lilley DM (2000) Location of cyanine-3 on double-stranded DNA: Importance for fluorescence resonance energy transfer studies. Biochemistry 39:6317–6324

    Article  PubMed  CAS  Google Scholar 

  9. Dietrich A, Buschmann V, Muller C, Sauer M (2002) Fluorescence resonance energy transfer (FRET) and competing processes in donor–acceptor substituted DNA strands: A comparative study of ensemble and single-molecule data. J Biotechnol 82:211–231

    PubMed  CAS  Google Scholar 

  10. Salvatore AEM, Kramer FR, Tyagi S (2002). Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Res 30:e122

    Article  Google Scholar 

  11. Toth K, Sauermann V, Langowski J (1998) DNA curvature in solution measured by fluorescence resonance energy transfer. Biochemistry 37:8173–8179

    Article  PubMed  CAS  Google Scholar 

  12. Tsuji A, Koshimoto H, Sato Y, Hirano M, Sei-Iida Y, Kondo S, Ishibashi K (2000) Direct observation of specific messenger RNA in a single living cell under a fluorescence microscope. Biophys J 78:3260–3274

    PubMed  CAS  Google Scholar 

  13. Tsuji A, Sato Y, Hirano M, Suga T, Koshimoto H, Taguchi T, Ohsuka S (2001). Development of a time-resolved fluorometric method for observing hybridization in living cells using fluorescence resonance energy transfer. Biophys J 81:501– 515

    Article  PubMed  CAS  Google Scholar 

  14. Cooper JP, Hagerman PJ (1990) Analysis of fluorescence energy transfer in duplex and branched DNA molecules. Biochemistry 29:9261–9268

    Article  PubMed  CAS  Google Scholar 

  15. Laib S, Seeger S (2004) FRET studies of the interaction of dimeric cyanine dyes with DNA. J Fluoresc 14:187–191

    Article  PubMed  CAS  Google Scholar 

  16. Hill J, Heriot SY, Worsfold O, Richardson TH, Fox AM, Bradley DDC (2003) Dynamics of Forster transfer in polyfluorene-based polymer blends and Langmuir–Blodgett nanostructures. Synth Met 139:787–790

    Article  CAS  Google Scholar 

  17. Heyduk E, Heyduk T, Claus P, Wisniewski JR (1997) Conformational changes of DNA induced by binding of Chironomus high mobility group protein 1a (cHMG1a). Regions flanking an HMG1 box domain do not influence the bend angle of the DNA. J Biol Chem 272:19763–19770

    Article  PubMed  CAS  Google Scholar 

  18. Mizukoshi T, Kodama TS, Fujiwara Y, Furuno T, Nakanishi M, Iwai S (2001) Structural study of DNA duplexes containing the (6–4) photoproduct by fluorescence resonance energy transfer. Nucleic Acids Res 29:4948–4954

    Article  PubMed  CAS  Google Scholar 

  19. Mergny JL, Boutorine AS, Garestier T et al (1994) Fluorescence energy transfer as a probe for nucleic acid structures and sequences. Nucleic Acids Res 22:920–928

    PubMed  CAS  Google Scholar 

  20. Howell WM, Jobs M, Brookes AJ (2002) iFRET: An improved fluorescence system for DNA-melting analysis. Genome Res 12:1401–1407

    Article  PubMed  CAS  Google Scholar 

  21. Sei-Iida Y, Koshimoto H, Kondo S, Tsuji A (2000) Real-time monitoring of in vitro transcriptional RNA synthesis using fluorescence resonance energy transfer. Nucleic Acids Res 28:E59

    Article  PubMed  CAS  Google Scholar 

  22. Cardullo RA, Agrawal S, Flores C, Zamecnik PC, Wolf DE (1988) Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer. Proc Natl Acad Sci USA 85:8790–8794

    Article  PubMed  CAS  Google Scholar 

  23. Okamura Y, Kondo S, Sase I, Suga T, Mise K, Furusawa I, Kawakami S, Watanabe Y (2000) Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization. Nucleic Acids Res 28:E107

    Article  PubMed  CAS  Google Scholar 

  24. Zal T, Gascoigne NR (2004) Using live FRET imaging to reveal early protein–protein interactions during T cell activation. Curr Opin Immunol 16:674–683

    PubMed  CAS  Google Scholar 

  25. Bjornson KP, Modrich P (2003) Differential and simultaneous adenosine di- and triphosphate binding by MutS. J Biol Chem 278:18557–18562

    Article  PubMed  CAS  Google Scholar 

  26. Eis PS, Lakowicz JR (1993). Time-resolved energy transfer measurements of donor–acceptor distance distributions and intramolecular flexibility of a CCHH zinc finger peptide. Biochemistry 32:7981–7993

    Article  PubMed  CAS  Google Scholar 

  27. Rolinski OJ, Birch DJ, McCartney L, Pickup JC (2001) Molecular distribution sensing in a fluorescence resonance energy transfer based affinity assay for glucose. Spectrochim Acta A Mol Biomol Spectrosc 57:2245–2254

    Article  PubMed  CAS  Google Scholar 

  28. Grant SA, Xu J, Bergeron EJ, Mroz J (2001) Development of dual receptor biosensors: An analysis of FRET pairs. Biosens Bioelectron 16:231–237

    Article  PubMed  CAS  Google Scholar 

  29. Tolosa L, Malak H, Raob G, Lakowicz JR (1997) Optical assay for glucose based on the luminescence decay time of the long wavelength dye Cy5tm. Sens Actuators B: Chem B45:93–99

    Article  CAS  Google Scholar 

  30. Mittoo S, Sundstrom LE, Bradley M (2003) Synthesis and evaluation of fluorescent probes for the detection of calpain activity. Anal Biochem 319:234–238

    Article  PubMed  CAS  Google Scholar 

  31. Lakowicz JR (1997) Topics in fluorescence spectroscopy. Nonlinear and two-photon induced fluorescence 5

  32. LaMorte VJ, Zoumi A, Tromberg BJ (2003) Spectroscopic approach for monitoring two-photon excited fluorescence resonance energy transfer from homodimers at the subcellular level. J Biomed Opt 8:357–361

    Article  PubMed  CAS  Google Scholar 

  33. Soini JT, Soukka JM, Soini E, Hanninen PE (2002) Two-photon excitation microfluorometer for multiplexed single-step bioaffinity assays. Rev Sci Instrum 73:2680–2685

    Article  CAS  Google Scholar 

  34. Brousmiche DW, Serin JM, Frechet JM, He GS, Lin TC, Chung SJ, Prasad PN (2003) Fluorescence resonance energy transfer in a novel two-photon absorbing system. J Am Chem Soc 125:1448–1449

    Article  PubMed  CAS  Google Scholar 

  35. Deniz AA, Dahan M, Grunwell JR, Ha T, Faulhaber AE, Chemla DS, Weiss S, Schultz PG (1999) Single-pair fluorescence resonance energy transfer on freely diffusing molecules: Observation of Forster distance dependence and subpopulations. Proc Natl Acad Sci USA 96:3670–3675

    Article  PubMed  CAS  Google Scholar 

  36. Lee NK, Kapanidis AN, Wang Y, Michalet X, Mukhopadhyay J, Ebright RH, Weiss S (2005) Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys J 88:2939–2953

    Article  PubMed  CAS  Google Scholar 

  37. Clegg RM, Murchie AI, Zechel A, Lilley DM (1993) Observing the helical geometry of double-stranded DNA in solution by fluorescence resonance energy transfer. Proc Natl Acad Sci USA 90:2994–2998

    Article  PubMed  CAS  Google Scholar 

  38. Masuko M, Ohuchi S, Sode K, Ohtani H, Shimadzu A (2000) Fluorescence resonance energy transfer from pyrene to perylene labels for nucleic acid hybridization assays under homogeneous solution conditions. Nucleic Acids Res 28:E34

    Article  PubMed  CAS  Google Scholar 

  39. Meltola NJ, Wahlroos R, Soini AE (2004) Hydrophilic labeling reagents of dipyrrylmethene-BF2 dyes for two-photon excited fluorometry: Syntheses and photophysical characterization. J Fluoresc 14:635–647

    Article  PubMed  CAS  Google Scholar 

  40. Meltola NJ, Vaarno J, Soini AE (2005) Dipyrrylmetheneboron difluorides as labels in two-photon excited fluorometry. Part II: Nucleic acid hybridisation assays. J Fluoresc 15:243–252

    Article  CAS  Google Scholar 

  41. Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S (1996) Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci USA 93:6264– 6268

    Article  PubMed  CAS  Google Scholar 

  42. Hink MA, Visser NV, Borst JW, Hoek AV, Visser AJWG (2003) Practical use of corrected fluorescence excitation and emission spectra of fluorescent proteins in Förster resonance energy transfer (FRET) studies. J Fluoresc 13:185–188

    Article  Google Scholar 

  43. Storhoff JJ, Lucas AD, Garimella V, Bao YP, Muller UR (2004) Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat Biotechnol 22:883–887

    Article  PubMed  CAS  Google Scholar 

  44. Ku WC, Lau WK, Tseng YT, Tzeng CM, Chiu SK (2004) Dextran sulfate provides a quantitative and quick microarray hybridization reaction. Biochem Biophys Res Commun 315:30– 37

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank M.Sc. Jonne Vaarno, University of Turku for his technical assistance and discussions concerning DNA. This work was supported by Academy of Finland, and a European Comission FP6 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rina Wahlroos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahlroos, R., Toivonen, J., Tirri, M. et al. Two-Photon Excited Fluorescence Energy Transfer: A Study Based on Oligonucleotide Rulers. J Fluoresc 16, 379–386 (2006). https://doi.org/10.1007/s10895-006-0084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-006-0084-x

Keywords

Navigation