Skip to main content
Log in

Metal-Enhanced Chemiluminescence

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this short paper we report the interactions of silver island films with chemiluminescing species. Our findings show that silver island films can increase the detectability of chemiluminescent reactions/species, with an approximately 5-fold increase in signal intensity. This finding not only suggests the use of silver nanostructures to amplify chemiluminscent signatures in assay platforms, and therefore increase the detectability of analytes or biospecies, but more importantly, suggests that surface plasmons can be directly excited by chemically induced electronically excited molecules. This finding is of significance towards our understanding of fluorophore–metal interactions, a relatively new near-field fluorescence concept, recently named metal-enhanced fluorescence and also radiative decay engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APS:

3-(Aminopropyl)triethoxysilane

MEC:

Metal-enhanced chemiluminescence

MEF:

Metal-enhanced fluorescence

RDE:

Radiative decay engineering

SEF:

Surface-enhanced fluorescence

SiFs:

Silver island films

References

  1. Hofmann O, Miller P, Sullivan P, Jones TS, deMello JC, Bradley DDC, deMello AJ (2005) Thin-film organic photodiodes as integrated detectors for microscale chemiluminescence assays. Sens Actuators B-Chem. 106(2):878–884

    Article  Google Scholar 

  2. Myhre O, Andersen JM, Aarnes H, Fonnum F (2003) Evaluation of the probes 2’,7’-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65(10):1575–1582

    Article  PubMed  CAS  Google Scholar 

  3. Bronstein I, Martin CS, Fortin JJ, Olesen CEM, Voyta JC (1996) Chemiluminescence: Sensitive detection technology for reporter gene assays. Clin Chem 42(9):1542–1546

    PubMed  CAS  Google Scholar 

  4. Moris P, Alexandre I, Roger M, Remacle J (1995) Chemiluminescence Assays of Organophosphorus and Carbamate Pesticides. Analytica Chimica Acta 302(1):53–59

    Article  CAS  Google Scholar 

  5. Garcia-Campana AM, Baeyens Willy R (2001) Chemiluminescence in analytical chemistry, Marcel Dekker, New York

    Google Scholar 

  6. Wampler JE (1985) Instrumentation: Seeing the light and measuring it. In BurrJG (ed.) Chemi- and Bioluminescence, Marcel Dekker, New York, pp 1–44

    Google Scholar 

  7. Berthold F (1990) Instrumentation for chemilunescence immunoassays. In Van DykeK , Van DykeR. (eds) Luminescence immunoassays and molecular applications, CRC Press, Boca Raton, pp 11–25

    Google Scholar 

  8. Nieman T (1995) Chemiluminescence: Theory and Instrumentation, Overview. In Encyclopedia of analytical science, Academic Press, Orlando, pp 608–613

    Google Scholar 

  9. Lakowicz JR (1999) Principles of fluorescence spectroscopy, Kluwer, New York

    Google Scholar 

  10. Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: An emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62.

    Article  PubMed  CAS  Google Scholar 

  11. Aslan K, Lakowicz JR, Geddes CD (2005) Plasmon Light Scattering in Biology and Medicine: New Sensing Approaches, Visions and Perspectives. Curr Opin Chem Biol Anal Tech. 9:538–544.

    Article  CAS  Google Scholar 

  12. Geddes CD, Aslan K, Gryczynski I, Malicka J, Lakowicz JR (2005) In CD Geddes, JR Lakowicz (eds) Radiative decay engineering, review chapter for topics in fluorescence spectroscopy, Kluwer Academic/Plenum Publishers, New York, USA, pp 405–448

  13. Geddes CD, Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR (2005) In CD Geddes, JR Lakowicz (eds) Topics in fluorescence spectroscopy, Kluwer Academic/Plenum Publishers, New York, USA, pp 401–448

  14. Lakowicz JR, Gryczynski I, Malicka J, Gryczynski Z, Geddes CD (2002) Enhanced and localized multiphoton excited fluorescence near metallic silver islands: Metallic islands can increase probe photostability. J Fluoresc 12:299–302

    Article  CAS  Google Scholar 

  15. Geddes CD, Cao H, Gryczynski I, Gryczynski Z, Fang J, Lakowicz JR (2003) Metal-enhanced fluorescence due to silver colloids on a planar surface: Potential applications of Indocyanine green to in vivo imaging. J Phys Chem A 107:3443–3449

    Article  CAS  Google Scholar 

  16. Aslan K, Lakowicz JR, Geddes CD (2005) Rapid deposition of triangular silver nanoplates on planar surfaces: Application to metal-enhanced fluorescence. J Phys Chem B 109:6247–6251

    Article  CAS  Google Scholar 

  17. Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005) Fast and slow deposition of silver nanorods on planar surfaces: Application to metal-enhanced fluorescence. J Phys Chem B 109(8):3157–3162

    Article  CAS  Google Scholar 

  18. Geddes CD, Parfenov A, Roll D, Fang J, Lakowicz JR (2003) Electrochemical and laser deposition of silver for use in metal enhanced fluorescence. Langmuir 19:6236–6241

    Article  CAS  Google Scholar 

  19. Aslan K, Badugu R, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence from plastic substrates. J Fluoresc 15(2):99–104

    Article  PubMed  CAS  Google Scholar 

  20. Aslan K, Geddes CD. Microwave-Accelerated Metal-Enhanced Fluorescence (MAMEF): A new platform technology for ultra fast and ultra bright assays. Anal Chem 77(24):8057–8067

  21. Lakowicz JR (2001) Radiative decay engineering: Biophysical and biomedical applications. Anal Biochem 298:1–24

    Article  PubMed  CAS  Google Scholar 

  22. Lakowicz JR, Geddes CD, Gryczynski I, Malicka J, Gryczynski Z, Aslan K, Lukomska J, Matveeva E, Zhang J, Badugu R, Huang J (2004) Advances in surface-enhanced fluorescence. J. Fluoresc 14(4):425–441

    Article  PubMed  CAS  Google Scholar 

  23. Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005) Annealed silver-island films for applications in metal-enhanced fluorescence: Interpretation in terms of radiating plasmons. J Fluoresc 15(5):643–654

    Article  PubMed  CAS  Google Scholar 

  24. Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR (2004) Radiative decay engineering 4. experimental studies of surface plasmon-coupled directional emission. Anal Biochem 324:170–182

    Article  PubMed  CAS  Google Scholar 

  25. Geddes CD, Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR (2004) Directional surface plasmon coupled emission. J Fluoresc 14:119–123

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH GM070929 and the National Center for Research Resources, RR008119. Partial salary support to CDG and JRL from UMBI is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris D. Geddes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, M.H., Aslan, K., Malyn, S.N. et al. Metal-Enhanced Chemiluminescence. J Fluoresc 16, 295–299 (2006). https://doi.org/10.1007/s10895-006-0082-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-006-0082-z

Keywords

Navigation