Skip to main content
Log in

The Fluorosolvatochromism of Brooker's Merocyanine in Pure and in Mixed Solvents

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

The fluorescence-based solvatochromism (fluorosolvatochromism) of 4-[(1-methyl-4(1H)-pyridinylidene)-ethylidene]-2,5-cyclohexadien-1-one (Brooker's merocyanine) was studied. The results revealed that the fluorescence emission band of the dye was dependent on the medium (\(\lambda _{\max }^{{\rm fl}} = 573\) nm in water and\(\lambda _{\max }^{{\rm fl}} = 622\) nm in DMF). The fluorescence quantum yields (φ f) were calculated for the dye in the solvents investigated. Low φ f values ( < 10%) were obtained for the dye and in order to better comprehend the radiative and nonradiative decay processes of this dye, its fluorescence lifetime in methanol was measured and was found to be very short (230 ps). The results suggest that the dye in the excited state decays rapidly through nonradiative processes. The behavior of the probe in binary mixtures including a hydrogen-bond accepting solvent (acetonitrile, N,N-dimethylformamide, and dimethylsulfoxide) and a hydroxylic solvent (water, methanol, ethanol, propan-2-ol, and butan-1-ol) was also investigated. All data were successfully fitted to a model based on solvent exchange equilibria, which allowed the separation of the different contributions of the solvent species in the solvation shell of the dye. The data obtained for the mixed solvents were explained based on solute–solvent and solvent–solvent interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Mishra, R. K. Behera, P. K. Behera, B. K. Mishra, and G. B. Behera (2000). Cyanines during the 1990s: A review. Chem. Rev. 100, 1973–2011.

    Article  PubMed  CAS  Google Scholar 

  2. S. Hunig, A. Langels, M. Schmittel, H. Wenner, I. F. Perepichka, and K. Peters (2001). Violene/cyanine hybrids as electrochromic systems: A new variation of the general structure. Eur. J. Org. Chem. 7, 1393–1399.

    Google Scholar 

  3. A. K. Chibisov, V. S. Maretsev, and H. Gorner (2003). Photochromism of nitrospironaphthoxazines and spiroanthroxazine. J. Photochem. Photobiol. A 159, 233–239.

    Article  CAS  Google Scholar 

  4. J. D. Winkler, and K. J. Deshayes (1987). Photodynamic macrocycles. J. Am. Chem. Soc. 109, 2190–2191.

    Article  CAS  Google Scholar 

  5. (a) A. Planner and D. Frackowiak (2001). Fast and slow processes of thermal deactivation of excited stilbazolium merocyanine dyes. J. Photochem. Photobiol. A 140, 223–228; (b) D. Frackowiak, A. Dudkowiak, and K. Wiktorowicz (2003). Applications of photothermic methods in photodynamic therapy investigations. J. Phys. IV 109, 33–41; (c) E. Staskowiak, A. Dudkowiak, K. Wiktorowicz, J. Cofta, and D. Frackowiak (2005). Spectral properties of stilbazolium merocyanines - potential sensitizers in photodynamic therapy and diagnosis. Part II. Merocyanines in resting and stimulated lymphocytes. J. Photochem. Photobiol. A 169, 159–168.

    Article  CAS  Google Scholar 

  6. (a) F. Wurthner, S. Yao, T. Debaerdemaeker, and R. Wortmann (2002). Dimerization of merocyanine dyes. Structural and energetic characterization of dipolar dye aggregates and implications for nonlinear optical materials. J. Am. Chem. Soc. 124, 9431–9447; (b) U. Lawrentz, W. Grahn, K. Lukasznk, C. Klein, R. Wortmann, A. Feldner, and D. Scherer (2002). Donor-acceptor oligoenes with a locked all-trans conformation: Synthesis and linear and nonlinear optical properties. Chem. Eur. J. 8, 1573–1590; (c) R. Andreu, J. Garin, J. Orduna, R. Alcala, and B. Villacampa (2003). Novel NLO-phores with proaromatic donor and acceptor groups. Org. Lett. 5, 3143–3146; (d) V. Diemer, H. Chaumeil, A. Defoin, P. Jacques, and C. Carré (2005). Synthesis of 4-[N-methyl-4-pyridinio]-phenolate (POMP) and negative solvatochromism of this model molecule in view of nonlinear optical applications. Tetrahedron Lett. 46, 4737–4740

    Article  PubMed  CAS  Google Scholar 

  7. N. S. Naser, A. Planner, and D. Frackowiak (1998). Action spectra of the photopotential generation for pigment and dye solutions in nematic liquid crystals located in the electrochemical cell. J. Photochem. Photobiol. A 113, 279–282.

    Article  CAS  Google Scholar 

  8. W. Arden and P. Fromherz (1980). Photosensitization of Semiconductor Electrode by Cyanine Dye in Lipid Bilayer. J. Electrochem. Soc. 127, 370–372.

    Article  CAS  Google Scholar 

  9. (a) S. H. Kawai, S. L. Gilat, and J.-M. Lehn (1999). Photochemical pKa-modulation and gated photochromic properties of a novel diarylethene switch. Eur. J. Org. Chem. 2359–2366; (b) M. Dekhtyar and W. Rettig (1999). Photochemical switching through protonation in merocyanines. J. Photochem. Photobiol. A 125, 57–62; (c) S. Jockusch, N. J. Turro, and F. R. Blackburn (2002). Photochromism of 2H-naphtho[1,2-b]pyrans: A spectroscopic investigation. J. Phys. Chem. A 106, 9236–9241

    Google Scholar 

  10. J. Arden-Jacob, J. Frantzeskos, N. U. Kemnitzer, A. Zilles, and K. H. Drexhage (2001). New fluorescent markers for the red region. Spectrochim. Acta, Part A 57, 2271–2283.

    Article  CAS  Google Scholar 

  11. (a) H. Löhr and F. Vögtle (1985). Chromoionophores and fluoroionophores. A new class of dye reagents. Acc. Chem. Res. 18, 65–72; (b) C. Reichardt and S. Asharin-Fard (1991). Pyridinium N-phenoxide betaines and their application for the characterization of solvent polarities. 17. Chromoionophoric pyridinium-N-phenolate betaine dyes. Angew. Chem. Int. Ed. Engl. 30, 558–559; (c) J. P. Malval, C. Chaimbault, B. Fischer, J. P. Morand, and R. Lapouyade (2001). Optical and electrochemical cations recognition and release from N-azacrown carbazoles. Res. Chem. Intermediates 27, 21–34

    Article  Google Scholar 

  12. (a) R. Martínez-Máñez and F. Sancenón (2003). Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 103, 4419–4476; (b) C. Suksai and T. Tuntulani (2003). Chromogenic anion sensors. Chem. Soc. Rev. 32, 192–202

    Article  PubMed  CAS  Google Scholar 

  13. C. Reichardt (1988). Solvents and Solvent Effects in Organic Chemistry, 2nd. ed., VCH, Weinheim, chapters 6 and 7.

    Google Scholar 

  14. P. Suppan and N. Ghoneim (1997). Solvatochromism, 1st. ed., Royal Society of Chemistry, Cambridge, chapter 3.

  15. (a) C. Reichardt (1994). Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94, 2319–2358; (b) C. Reichardt (2004). Pyridinium N-phenolate betaine dyes as empirical indicators of solvent polarity: Some new findings. Pure Appl. Chem. 76, 1903–1919; (c) C. Reichardt (2005). Pyridinium N-phenoxide betaine dyes and their application to the determination of solvent polarities part 29 - Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chem. 7, 339–351

    Article  CAS  Google Scholar 

  16. (a) L. G. S. Brooker, C. H. Keyes, R. H. Sprague, R. H. Van Dyke, G. Van Zandt, F. L. White, H. W. J. Cressman, and S. G. Dent (1951). Color and constitution. 10. Absorption of the merocyanines. J. Am. Chem. Soc. 73, 5332–5350; (b) L. G. S. Brooker, G. H. Keyes, and D. W. Heseltine (1951). Color and constitution. 11. Anhydronium bases of p-hydroxystyryl dyes as solvent polarity indicators. J. Am. Chem. Soc. 73, 5350–5356

    Article  CAS  Google Scholar 

  17. (a) V. Gageiro, M. Aillón, and M. C. Rezende (1992). Interpretation of the halochromism of pyridiniophenoxide dyes. J. Chem. Soc. Faraday Trans. 88, 201–204; (b) S. P. Zanotto, M. Scremin, C. Machado, and M. C. Rezende (1993). Cationic and anionic halochromism. J. Phys. Org. Chem. 6, 637–641; (c) V. G. Machado, M. G. Nascimento, and M. C. Rezende (1998). The halochromism of the 1-methyl-8-oxyquinolinium dye. Spectrosc. Lett. 31, 359–367; (d) C. Machado, M. G. Nascimento, M. C. Rezende, and A. E. Beezer (1999). Calorimetric evidence of aggregation of the ET(30) dye in alcoholic solutions. Thermochim. Acta 328, 155–159; (e) Y. P. Kovtun, Y. O. Prostota, M. P. Shandura, Y. M. Poronik, and A. I. Tolmachev (2004). Metallochromic merocyanines of 8-hydroxyquinoline series. II. Dyes with end nuclei of low basicity. Dyes and Pigments 60, 215–221

    Article  CAS  Google Scholar 

  18. K. Dimroth and C. Reichardt (1966). Die colorimetrische analyse binarer organischer, losungsmittelgemische mit hilfe der solvatochromie von pyridinium-N-phenolbetainen. Z. Anal. Chem. 215, 344.

    Article  CAS  Google Scholar 

  19. R. D. Skwierczynski and K. A. Connors (1994). Solvent effects on chemical processes. 7. Quantitative description of the composition dependence of the solvent polarity measure ET(30) in binary aqueous-organic solvent mixtures. J. Chem. Soc., Perkin Trans. 2 467–472.

  20. (a) M. Rosés, C. Ràfols, J. Ortega, and E. Bosch (1995). Solute-solvent and solvent-solvent interactions in binary solvent mixtures. 1. A comparison of several preferential solvation models for describing ET(30) polarity of dipolar hydrogen-bond acceptor-cosolvent mixtures. J. Chem. Soc., Perkin Trans. 2 1607–1615; (b) E. Bosch, M. Rosés, K. Herodes, I. Koppel, I. Leito, I. Koppel, and V. Taal (1996). Solute-solvent and solvent-solvent interactions in binary solvent mixtures .2. Effect of temperature on the ET(30) polarity parameter of dipolar hydrogen bond acceptor-hydrogen bond donor mixtures. J. Phys. Org. Chem. 9, 403–410; (c) K. Herodes, I. Leito, I. Koppel, and M. Rosés (1999). Solute-solvent and solvent-solvent interactions in binary solvent mixtures. Part 8. The ET(30) polarity of binary mixtures of formamides with hydroxylic solvents. J. Phys. Org. Chem. 12, 109–115.

    Google Scholar 

  21. (a) D. C. da Silva, I. Ricken, M. A. R. Silva, and V. G. Machado (2002). Solute-solvent and solvent-solvent interactions in the preferential solvation of Brooker's merocyanine in binary solvent mixtures. J. Phys. Org. Chem. 15, 420–427; (b) T. Bevilaqua, D. C. da Silva, and V. G. Machado (2004). Preferential solvation of Brooker's merocyanine in binary solvent mixtures composed of formamides and hydroxylic solvents. Spectrochim. Acta Part A 60, 951–958.

    Article  CAS  Google Scholar 

  22. C. G. Venturini, J. Andreaus, V. G. Machado, and C. Machado (2005). Solvent effects in the interaction of methyl-β-cyclodextrin with solvatochromic merocyanine dyes. Org. Biomol. Chem. 3, 1751–1756.

    Article  PubMed  CAS  Google Scholar 

  23. (a) See for instance: C. Machado, M. G. Nascimento, and M. C. Rezende (1994). Solvato- and halo-chromic behavior of some 4-[N-methylpyridiniumyl)methylidineamino]phenolate dyes. J. Chem. Soc. Perkin Trans. 2 2539-2544; (b) A. Botrel, B. Aboab, F. Corre, and F. Tonnard (1995). A theoretical investigation of solvatochromism – Application to merocyanines similar to colored forms obtained by flash-photolysis of spiropyrans. Chem. Phys. 194, 101–116; (c) L. P. Novaki and O. A. El Seoud (1996). Solvatochromism in pure solvents: Effects of the molecular structure of the probe. Ber. Bunsenges. Phys. Chem. 100, 648–655; (d) V. G. Machado, C. Machado, M. G. Nascimento, and M. C. Rezende (1997). Solvatochromism and preferential solvation of aryliminomethylpyridinium iodides in binary mixtures. J. Phys. Org. Chem. 10, 731–736; (e) T. Fayed and E. H. Etaiw (1998). Preferential solvation of solvatochromic benzothiazolinic merocyanines in mixed binary solvents. Spectrochim. Acta Part A 54, 1909–1918; (f) M. C. Rezende, P. Campodonico, E. Abuin, and J. Kossanyi (2001). Merocyanine-type dyes from barbituric acid derivatives. Spectrochim. Acta Part A 57, 1183–1190; (g) C. Reichardt, D. Che, G. Heckenkemper, and G. Schäfer (2001). Syntheses and UV/Vis-spectroscopic properties of hydrophilic 2-, 3-, and 4-pyridyl-substituted solvatochromic and halochromic pyridinium N-phenolate betaine dyes as new empirical solvent polarity indicators. Eur. J. Org. Chem. 2343–2361; (h) N. Ghoneim (2001). Study of the preferential solvation of some betaine dyes in binary solvent mixtures. Spectrochim. Acta Part A 57, 1877–1884; (i) S. El-Daly, M. H. Abdel-Kader, R. M. Issa, and E. A. El-Sherbini (2003). Influence of solvent polarity and medium acidity on the UV–Vis spectral behavior of 1-methyl-4-[4-amino-styryl] pyridinum iodide. Spectrochim. Acta Part A 59, 405–411; (j) K. Herodes, J. Koppel, C. Reichardt, and I. A. Koppel (2003). UV–visible spectroscopic study of the hydrophilic and solvatochromic-4-[2,6-diphenyl-4-(pyridin-4-yl) pyridinium-1-yl]-2,6-bis(pyridin-3-yl)phenolate betaine dye in eight binary solvent mixtures. J. Phys. Org. Chem. 16, 626–632; (k) E. B. Gaeva, V. Pimienta, A. V. Metelitsa, N. A. Voloshin, V. I. Minkin, and J. C. Micheau (2005). Solvation effects on spirooxazine to merocyanine thermal reversion kinetics in acetonitrile-water binary mixtures. J. Phys. Org. Chem. 18, 315–320.

    Google Scholar 

  24. (a) See for instance: H. Langhals (1982). Polarity of binary-liquid mixtures. Angew. Chem. Int. Ed. Engl. 21, 724–733; (b) S. Lin and W. S. Struve (1991). Solvatochromism and time-resolved fluorescence of the antitumor agent mitoxantrone and its analogs in solution and in DNA. J. Phys. Chem. 95, 2251; (c) S. T. Abdel-Halim (1993). Solvatochromism of a typical merocyanine dye – Further investigations. J. Chem. Soc. Faraday Trans. 89, 55–57; (d) H. Ephardt and P. Fromherz (1993). Fluorescence of amphiphilic hemicyanine dyes without free double-bonds. J. Phys. Chem. 97, 4540–4547 (e) J. J. La Clair (1998). Synthesis of a new class of solvent-sensitive fluorescent labels. Angew. Chem. Int. Ed. Engl. 37, 325–329; (f) J. J. La Clair (1998). Synthesis of a new class of solvent-sensitive fluorescent labels. Angew. Chem. Int. Ed. Engl. 37, 325–329.

    Article  Google Scholar 

  25. (a) Tyutyulkov,. N., Fabian, J., Mehlhorn, A., Dietz, F., Tadjer,F., (1991). Polymethine DyesStructure and Properties, St. Kliment Ohridski University Press, Sofia, p. 145; (b) I. Baraldi, G. Brancolini, F. Momicchioli, G. Ponterini, and D. Vanossi (2003). Solvent influence on absorption and fluorescence spectra of merocyanine dyes: a theoretical and experimental study. Chem. Phys. 288, 309–325.

    Google Scholar 

  26. C. Reichardt (2005). Communicated to the authors.

  27. B. S. Furniss, A. J. Hannaford, P. W. G. Smith, and A. R. Tatchell (1989). Vogel's Textbook of Practical Organic Chemistry, 5th. ed., Longman, London.

    Google Scholar 

  28. M. J. Minch and S. S. Shah (1977). Merocyanin dye preparation for introductory organic laboratory. J. Chem. Educ. 54, 709.

    Article  CAS  Google Scholar 

  29. (a) Guilbault, G. G., (1973). Practical Fluorescence: Theory, Methods and Techniques, Marcel Decker, New York; (b) Bridges, J. W., (1981) in J. N. Miller (Ed.), Standards in Fluorescence Spectrometry, Chapman and Hall, New York.

    Google Scholar 

  30. M. J. Kamlet, J.-L. M. Abboud, M. H. Abraham, and R. W. Taft (1983). Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α and β, and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. 48, 2877–2887.

    Article  CAS  Google Scholar 

  31. C. Reichardt (1988). Solvents and Solvent Effects in Organic Chemistry, 2nd. ed., VCH, Weinheim, pp. 305–311.

    Google Scholar 

  32. M. A. R. Silva, D. C. da Silva, V. G. Machado, E. Longhinotti, and V. L. A. Frescura (2002). Preferential solvation of a hydrophobic probe in binary mixtures comprised of a nonprotic and a hydroxylic solvent: A view of solute-solvent and solvent-solvent interactions. J. Phys. Chem. A 106, 8820–8826.

    Article  CAS  Google Scholar 

  33. Y. Marcus (1994). The use of chemical probes for the characterization of solvent mixtures. 2. Aqueous mixtures. J. Chem. Soc., Perkin Trans. 2 1751–1758.

  34. H. G. Benson and J. N. Murrell (1972). Some studies of benzenoid-quinonoid resonance. 2. Effect of solvent polarity on structure and properties of merocyanine dyes. J. Chem. Soc. Faraday Trans. 2 68, 137–143.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The financial support of Brazilian Conselho Nacional de Pesquisa Científica e Tecnológica (CNPq), UFSC and FURB is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Clodoaldo Machado or Vanderlei G. Machado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavalli, V., da Silva, D.C., Machado, C. et al. The Fluorosolvatochromism of Brooker's Merocyanine in Pure and in Mixed Solvents. J Fluoresc 16, 77–86 (2006). https://doi.org/10.1007/s10895-005-0053-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-0053-9

KEYWORDS:

Navigation