Skip to main content
Log in

Relation Between Fluorescence Decays and Temporal Evolution of Excited States

  • OriginalPaper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

A differential equation system describing the temporal evolution of excited substates and fluorescence emission were tested using a DOPRI algorithm. The numerical solutions show that there is significant difference in the measurable parameters according to the type of connectivity among the excited substates. In the globally connected case, the fluorescence emission exhibits a double exponential behavior, and the first moment of the emitted spectrum decays with stretched exponential characterized by β < 1. In the diffusive case the fluorescence emission cannot be always fitted with double exponential, and the first moment of the emitted spectrum may decay with stretched exponential characterized by β > 1. Details of modeling and the possibilities of drawing conclusions are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. J. R. Lakowitz (1983). Principles of Fluorescent Spectroscopy, Plenum Press, New York.

    Google Scholar 

  2. J. R. Lakowitz (1991). Topics in Fluorescence Spectroscopy, Plenum Press, New York.

    Google Scholar 

  3. M. Gruebele (1998). Intramolecular vibrational dephasing obeys a power law at intermediate times. Proc. Natl. Acad. Sci. U.S.A. 95, 5965–5970.

    Article  PubMed  CAS  Google Scholar 

  4. D. Toptygin and L. Brand (2000). Spectrally and time-resolved fluorescence emission of indole during solvent relaxation: A quantitative model. Chem. Phys. Lett. 322, 496–502.

    Article  CAS  Google Scholar 

  5. K. Kuczera, J. C. Lambry, J. L. Martin, and M. Karplus (1993). Nonexponential relaxation after ligand dissociation from myoglobin. A molecular dynamics simulation. Proc. Natl. Acad. Sci. U.S.A. 90, 5805–5807.

    Article  PubMed  CAS  Google Scholar 

  6. Y. Feldman, A. Puzenko, and Y. Ryabov (2002). Non-Debye dielectric relaxation in complex materials. Chem. Phys. 284, 139–168.

    Article  CAS  Google Scholar 

  7. M. Lim, T. A. Jackson, and P. A. Anfinrud (1993). Nonexponential protein relaxation: Dynamics of conformational change in myoglobin. Proc. Natl. Acad. Sci. U.S.A. 90, 5801–5804.

    Article  PubMed  CAS  Google Scholar 

  8. S. J. Hagen (2003). Exponential decay kinetics in “Downhill” protein folding. PROTEINS: Struct. Funct. Genet. 50, 1–4.

    Article  CAS  Google Scholar 

  9. J. R. Lakowicz (2000). On spectral relaxation in proteins. Photochem. Photobiol. 72(4), 421–437.

    Article  PubMed  CAS  Google Scholar 

  10. J. Gapinski, M. Paluch, and A. Patkowski (2002). Correlation between nonexponential relaxation and non-Arrhenius behavior under conditions of high compression. Phys. Rev. E 66(1), 011501.

    Article  CAS  Google Scholar 

  11. F. Piazza, P. De Los Rios, and Y.-H. Sanejouand (2005). Slow energy relaxation of macromolecules and nanoclusters in solution. PRL 94, 145502.

    Article  CAS  Google Scholar 

  12. S. J. Hagen and W. A. Eaton (1996). Nonexponential structural relaxations in proteins. J. Chem. Phys. 104(9), 3395–3398.

    Article  CAS  Google Scholar 

  13. J. Sabelko, J. Ervin, and M. Gruebele (1999). Observation of strange kinetics in protein folding. Proc. Natl. Acad. Sci. U.S.A. 96, 6031–6036.

    Article  PubMed  CAS  Google Scholar 

  14. E. A. Burstein and V. I. Emelyanenko (1996). Log-normal description of fluorescence spectra of organic fluorophores. Photochem. Photobiol. 64(2), 316–320.

    CAS  Google Scholar 

  15. J. R. Dormand and P. J. Prince (1980). A family of embedded Runge-Kutta formulae. J. Comp. Appl. Math. 6, 19–26.

    Article  Google Scholar 

  16. H. K. Nakamura, M. Sasai, and M. Takano (2004). Squeezed exponential kinetics to describe a nonglassy downhill folding as observed in a lattice protein model. PROTEINS: Struct. Funct. Bioinform. 55, 99–106.

    Article  CAS  Google Scholar 

  17. R. P. De Toma and L. Brand (1977). Excited state solvation dynamics of 2-anilinonaphthalene. Chem. Phys. Lett. 47, 231–236.

    Article  CAS  Google Scholar 

  18. J. R. Lakowitz, H. Cherek, G. Laczko, and E. Gratton (1984). Time-resolved fluorescence emission spectra of labeled hospholipid vesicles, as observed using multi-frequency phase-modulatoin fluorometry. Biochim. Biophys. Acta 777, 183–193.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Prof. Béla Somogyi, the Head of Institute of Biophysics at the University of Pécs for interesting and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Erostyák.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erostyák, J., Makkai, G., Buzády, A. et al. Relation Between Fluorescence Decays and Temporal Evolution of Excited States. J Fluoresc 16, 301–307 (2006). https://doi.org/10.1007/s10895-005-0046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-0046-8

KEY WORDS:

Navigation