Skip to main content
Log in

3D Particle Tracking on a Two-Photon Microscope

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

A 3D single-particle-tracking (SPT) system was developed based on two-photon excitation fluorescence microscopy that can track the motion of particles in three dimensions over a range of 100 μm and with a bandwidth up to 30 Hz. We have implemented two different techniques employing feedback control. The first technique scans a small volume around a particle to build up a volumetric image that is then used to determine the particle's position. The second technique scans only a single plane but utilizes optical aberrations that have been introduced into the optical system that break the axial symmetry of the point spread function and serve as an indicator of the particle's axial position. We verified the performance of the instrument by tracking particles in well-characterized models systems. We then studied the 3D viscoelastic mechanical response of 293 kidney cells using the techniques. Force was applied to the cells, by using a magnetic manipulator, onto the paramagnetic spheres attached to the cell via cellular integrin receptors. The deformation of the cytoskeleton was monitored by following the motion of nearby attached fluorescent polystyrene spheres. We showed that planar stress produces strain in all three dimensions, demonstrating that the 3D motion of the cell is required to fully model cellular mechanical responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. L. S. Barak and W. W. Webb (1981). Fluorescent low-density lipoprotein for observation of dynamics of individual receptor complexes on cultured human-fibroblasts. J. Cell Biol. 90(3), 595–604.

    Article  PubMed  CAS  Google Scholar 

  2. M. Debrander, G. Geuens, R. Nuydens, M. Moeremans, and J. Demey (1985). Probing microtubule-dependent intracellular motility with nanometer particle video ultramicroscopy (nanovid ultramicroscopy). Cytobios. 43(174), 273–283.

    Google Scholar 

  3. T. Fujiwara, K. Ritchie, H. Murakoshi, K. Jacobson, and A. Kusumi (2002). Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 157(6), 1071–1081.

    Article  PubMed  CAS  Google Scholar 

  4. K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, and A. Kusumi (2004). Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys. J. 86(6), 4075–4093.

    Article  PubMed  CAS  Google Scholar 

  5. K. Kis-Petikova and E. Gratton (2004). Distance measurement by circular scanning of the excitation beam in the two-photon microscope. Microsc. Res. Tech. 63(1), 34–49.

    Article  PubMed  Google Scholar 

  6. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin (2003). Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 300(5628), 2061–2065.

    Article  PubMed  CAS  Google Scholar 

  7. H. Bornfleth, P. Edelmann, D. Zink, T. Cremer, and C. Cremer (1999). Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophys. J. 77(5), 2871–2886.

    PubMed  CAS  Google Scholar 

  8. D. D. Li, J. Xiong, A. L. Qu, and T. Xu (2004). Three-dimensional tracking of single secretory granules in live PC12 cells. Biophys. J. 87(3), 1991–2001.

    Article  PubMed  CAS  Google Scholar 

  9. W. F. Marshall, A. Straight, J. F. Marko, J. Swedlow, A. Dernburg, A. Belmont, A. W. Murray, D. A. Agard, and J. W. Sedat (1997). Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7(12), 930–939.

    Article  PubMed  CAS  Google Scholar 

  10. D. Thomann, D. R. Rines, P. K. Sorger, and G. Danuser (2002). Automatic fluorescent tag detection in 3D with super-resolution: Application to the analysis of chromosome movement. J. Microsc. Oxf. 208, 49–64.

    Article  CAS  Google Scholar 

  11. R. M. Dickson, D. J. Norris, Y. L. Tzeng, and W. E. Moerner (1996). Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels. Science 274(5289), 966–969.

    Article  PubMed  CAS  Google Scholar 

  12. I. M. Peters, Y. van Kooyk, S. J. van Vliet, B. G. de Grooth, C. G. Figdor, and J. Greve (1999). 3D single-particle tracking and optical trap measurements on adhesion proteins. Cytometry 36(3), 189–194.

    Article  PubMed  CAS  Google Scholar 

  13. M. Speidel, A. Jonas, and E. L. Florin (2003). Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Opt. Lett. 28(2), 69–71.

    PubMed  CAS  Google Scholar 

  14. H. P. Kao, A. S. Verkman. (1994). Tracking of Single Fluorescent Particles in 3 Dimensions - Use of Cylindrical Optics to Encode Particle Position. Biophys. J. 67(3), 1291–1300.

    PubMed  CAS  Google Scholar 

  15. H. Huang, C. Y. Dong, H.-S. Kwon, J. D. Sutin, R. D. Kamm, and P. T. C. So (2002). Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation. Biophys. J. 82(4), 2211–2223.

    PubMed  CAS  Google Scholar 

  16. A. R. Bausch, W. Moller, and E. Sackmann (1999). Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76(1 Pt 1), 573–579.

    PubMed  CAS  Google Scholar 

  17. A. Bausch, F. Ziemann, A. Boulbitch, K. Jacobson, and E. Sackmann (1998). Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys. J. 75, 2038–2049.

    PubMed  CAS  Google Scholar 

  18. H. Huang, R. D. Kamm, PTC So, and R. T. Lee (2001). Receptor-based differences in human aortic smooth muscle cell membrane stiffness. Hypertension 38(5), 1158–1161.

    PubMed  CAS  Google Scholar 

  19. B. P. Helmke, A. B. Rosen, and P. F. Davies (2003). Mapping mechanical strain of an endogenous cytoskeletal network in living endothelial cells. Biophys. J. 84(4), 2691–2699.

    Article  PubMed  CAS  Google Scholar 

  20. B. P. Helmke, D. B. Thakker, R. D. Goldman, and P. F. Davies (2001). Spatiotemporal analysis of flow-induced intermediate filament displacement in living endothelial cells. Biophys. J. 80(1), 184–194.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Jan Lammerding for help with calibration of the paramagnetic bead force measurements shown in Figs. 1 and 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Ragan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragan, T., Huang, H., So, P. et al. 3D Particle Tracking on a Two-Photon Microscope. J Fluoresc 16, 325–336 (2006). https://doi.org/10.1007/s10895-005-0040-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-0040-1

KEY WORDS

Navigation