Skip to main content
Log in

CT-Operated Bifunctional Fluorescent Probe Based on a Pretwisted Donor–Donor–Biphenyl

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Taking into account the structural requirements for TICT-type sensor molecules, a general synthetic route to derive pH and cation-responsive pretwisted donor (D)–donor (D) biphenyls (b) equipped with donor receptors is developed and a first model compound containing a mono aza-15-crown-5 and a DMA receptor is synthesized, see Scheme 1. The spectroscopic properties of this new bifunctional D–D biphenyl are studied in the non-polar and polar solvents cyclohexane, acetonitrile, and methanol. Protonation as well as complexation studies are performed with the representative metal ions Na(I), K(I), Ca(II), Ag(I), Zn(II), Cd(II), Hg(II), and Pb(II) to reveal the potential of this molecule for communication of whether none, only one, or both binding sites are engaged in analyte coordination by spectroscopically distinguishable outputs. The results are compared to those obtained with closely related donor (D)–acceptor (A) substituted biphenyl-type sensor molecules and are discussed within the framework of neutral and ionic D – A biphenyls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig 1.
Fig 2.
Fig 3.
Fig 4.
Fig. 5
Scheme 3.

Similar content being viewed by others

REFERENCES

  1. J. P. Desvergne and A. W. Czarnik (Eds.) (1997). Chemosensors of Ion and Molecule Recognition, Kluwer Academic Publishers, Netherlands, and specific reviews referenced in the various chapters.

    Google Scholar 

  2. B. Valeur and J.-C. Brochon (Eds.) (2001). New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Sciences, Springer, Berlin, and more specific reviews are referenced in the various chapters.

    Google Scholar 

  3. K. Rurack and U. Resch-Genger (2002). Rigidization, preorientation and electronic decoupling—The magic triangle for the design of highly efficient fluorescent sensors and switches. Chem. Soc. Rev. 31, 116, and references therein.

    Article  CAS  Google Scholar 

  4. K. Rurack (2001). Flipping the light switch ‘ON’—The design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochim. Act A 57, 2161–2180, and references therein.

    Article  CAS  Google Scholar 

  5. J. F. Callan, A. P. de Silva, and D. C. Magri (2005). Luminescent sensors and switches in the early 21st century. Tetrahedron Lett. 61, 8551–8588, and references therein.

    CAS  Google Scholar 

  6. J. F. Callan, A. P. de Silva, and D. C. Magri (2000). Special issue on luminescent sensors. Coord. Chem. Rev. 205, and references therein.

  7. S. R. Adam, J. P. Y. Kao, G. Grynkiewicz, A. Minta, and R. Y. Tsien (1988). Biologically useful chelators that release Ca2+ upon illumination. J. Am. Chem. Soc. 103, 3212–3220.

    Article  Google Scholar 

  8. M. M. Martin, P. Plaza, Y. H. Meyer, F. Badaoui, J. Bourson, J.-P. Lefevre, and B. Valeur (1996). Steady-state and picosecond spectroscopy of Li+ or Ca2+ complexes with a crowned merocyanine. Reversible photorelease of cations. J. Phys. Chem. 100, 6879–6888.

    Article  CAS  Google Scholar 

  9. P. Plaza, I. Leray, P. Changenet-Barret, M. M. Martin, and B. Valeur (2002). Reversible bulk photorelease of strontium ion from a crown ether-linked merocyanine. Chem. Phys. Chem. 3, 668–674.

    PubMed  CAS  Google Scholar 

  10. R. Mathevet, G. Jonusauskas, C. Rullière, J.-F. Létard, andR. J. Lapouyade (1995). Picosecond transient absorption as monitor of the stepwise cation-macrocycle decoordination in the excited singlet state of 4-(N-monoaza-15-crown-5)-4′-cyanostilbene. Phys. Chem. 99, 15709–15713.

    Article  CAS  Google Scholar 

  11. N. Marcotte, P. Plaza, D. Lavabre, S. Fery-Forgues,and M. M. Martin (2003). Calcium photorelease from a symmetrical donor–acceptor–donor bis-crown-fluoroionophore evidenced by ultrafast absorption spectroscopy. J. Phys. Chem. A 107, 2394–2402.

    Article  CAS  Google Scholar 

  12. R. Rudolf, M. Mongillo, R. Rizzuto, and T. Pozzan (2003). Innovation: Looking forward to seeing calcium. Nat. Rev. 4, 579–586.

    Article  CAS  Google Scholar 

  13. Y. Q. Li, J. L. Bricks, U. Resch-Genger,V. Kharlanov andW. Rettig,CT-operated fluorescent reporters with acceptor and donor-receptors: Part I. Photophysical properties and protonation studies of biphenyl-type probes incorporating 2,2′:6′,2″-terpyridine acceptors, J. Phys. Chem. A., manuscript in preparation.

  14. Y. Q. Li, J. L. Bricks, U. Resch-Genger, andW. Rettig, CT-operated fluorescent reporters with acceptor and donor-receptors: Part II. Cation coordination behavior of biphenyl-type probes incorporating 2,2′:6′,2″-terpyridine acceptors, Phys. Chem. Chem. Phys., manuscript in preparation.

  15. Y. Q. Li, J. L. Bricks, U. Resch-Genger, W. Weigel, andW. Rettig, CT-operated fluorescent reporters with acceptor and donor-receptors: Part III. Spectroscopic, protonation and complexation behavior of biphenyls incorporating 2,2′:6′,2″-bisthienylpyridine binding sites, manuscript in preparation.

  16. W. Goodall and J. A. G. Williams (2001). A new highly fluorescent terpyridine which responds to zinc ions with a large red shift. Chem. Commun., 2514–2515.

  17. D. Braun, W. Rettig, S. Delmond, J.-F. Letard, and R. Lapouyade (1997). Amide derivatives of DMABN—A new class of dual fluorescent compounds. J. Phys. Chem. 101, 6836–6841.

    CAS  Google Scholar 

  18. J.-P. Malval and R. Lapouyade (2001). Derivatization of4-(dimethylamino)benzamide to dual fluorescent ionophores: Divergent spectroscopic effects on N or O amide chelation. Helv. Chim. Acta 84, 2439–2451.

    Article  CAS  Google Scholar 

  19. K. Hamasaki, H. Ikeda, A. Nakamura, A. Ueno, F. Toda, I. Suzuki, and T. Osa (1993). Fluorescent sensors of molecular recognition. Modified cyclodextrins capable of exhibiting guest-responsive twisted intramolecular charge transfer fluorescence. J. Am. Chem. Soc. 115, 5035–5041.

    Article  CAS  Google Scholar 

  20. K. Hamasaki, A. Ueno, F. Toda, I. Suzuki, and T. Osa (1994). Molecular recognition indicators of modified cyclodextrins using twisted intramolecular charge-transfer fluorescence. Bull. Chem. Soc. Jpn. 67, 516.

    CAS  Google Scholar 

  21. W. Siebrand (1966). Mechanism of radiationless triplet decay in aromatic hydrocarbons and the magnitude of the Franck–Condon factors. J. Chem. Phys. 44, 4055–4061.

    Article  CAS  Google Scholar 

  22. J. Bourson, J. Pouget, and B. Valeur (1993). Ion-responsive fluorescent compounds. 4. Effect of cation binding on the photophysical properties of a coumarin linked to monoaza- and diaza-crown ethers. J. Phys. Chem. A 97, 4552–4557.

    Article  CAS  Google Scholar 

  23. I. Leray, J.-L. Habib-Jiwan, C. Branger, J.-Ph. Soumillion, and B. Valeur (2000). Ion-responsive fluorescent compounds. VI. Coumarin 153 linked to rigid crowns for improvement of selectivity. J. Photochem. Photobiol. A 132, 163–169.

    Article  Google Scholar 

  24. P. Crochet, J.-P. Malval, and R. Lapouyade (2000). New fluoroionophores from aniline dimer derivatives: A variation of cation signalling mechanism with the number of amino groups. Chem. Commun., 289–290.

  25. S. Delmond, J.-F. Létard, R. Lapouyade, R. Mathevet, G. Jonusauskas, and C. Rullière (1996). Cation-triggered photoinduced intramolecular charge transfer and fluorescence red-shift in fluorescence probes. New J. Chem. 20, 861–869.

    CAS  Google Scholar 

  26. S. Fery-Forgues, M. T. Le Bris, J.-P. Guette, and B. Valeur (1988). Ion-responsive fluorescent compounds. 1. Effect of cation binding on photophysical properties of a benzoxazinone derivative linked to monoaza-15-crown-5. J. Phys. Chem. 92, 6233–6237.

    Article  CAS  Google Scholar 

  27. S. Fery-Forgues, M. T. Le Bris, J.-C. Mialocq, J. Pouget, W. Rettig, and B. Valeur (1992). Photophysical properties of styryl derivatives of aminobenzoxazinones. J. Phys. Chem. 96, 701–710.

    Article  CAS  Google Scholar 

  28. K. Rurack, W. Rettig, and U. Resch-Genger (2000). Unusually high cation-induced fluorescence enhancement of a structurally simple intrinsic fluoroionophore with a donor–acceptor–donor constitution. Chem. Commun, 407–408.

  29. N. Marcotte, P. Plaza, D. Lavabre, S. Fery-Forgues,and M. M. Martin (2003). Calcium photorelease from a symmetrical donor–acceptor–donor bis-crown-fluoroionophore evidenced by ultrafast absorption spectroscopy. J. Phys. Chem. A. 107, 2394–2402.

    Article  CAS  Google Scholar 

  30. B. Liu and H. Tian (2005). A ratiometric fluorescent chemosensor for fluoride ions based on a proton transfer signaling mechanism. J. Chem. Mater. 15, 2681–2686.

    Article  CAS  Google Scholar 

  31. K. Rurack, A. Koval’chuck, and J. L. Bricks (2001). A simple bifunctional fluoroionophore signaling different metal ions either independently or cooperatively. J. Am. Chem. Soc. 123, 6205–6206.

    Article  PubMed  CAS  Google Scholar 

  32. J. N. Wilson and U. H. F. Bunz (2005). Switching of intramolecular charge transfer in cruciforms: Metal ion sensing. J. Am. Chem. Soc. 127, 4124–4125.

    Article  PubMed  CAS  Google Scholar 

  33. M. Maus, W. Rettig, and R. Lapouyade (1996). Photodynamics of a pretwisted donor–acceptor biphenyl. J. Inf. Recording. 22, 451–456.

    CAS  Google Scholar 

  34. W. Rettig, M. Maus, and R. Lapouyade (1996). Conformational control of electron transfer states: Induction of molecular photodiode behaviour. Ber. Bunsenges. Phys. Chem. 100, 2091–2096.

    CAS  Google Scholar 

  35. M. Maus and W. Rettig (1998). The electronic structure of 4-(N,N-dimethylamino)-4-cyano-biphenyl and its planar and twisted model compounds. Chem. Phys. 218, 151–162.

    Article  Google Scholar 

  36. M. Maus and W. Rettig (1998). Donor–acceptor-biphenyls: Electronic and conformational pathways after photoexcitation. J. Inf. Record. 24, 461–468.

    CAS  Google Scholar 

  37. M. Maus, W. Rettig, G. Jonusauskas, R. Lapouyade, and C. Rulliere (1998). Sub-picosecond transient absorption of donor-acceptor biphenyls. Intramolecular control of the excited state charge transfer processes by a weak electronic coupling. J. Phys. Chem. A 102, 7393–7405.

    Article  CAS  Google Scholar 

  38. M. Maus, W. Rettig, D. Bonafoux, and R. Lapouyade (1999). Photoinduced intramolecular charge transfer in a series of differently twisted donor–acceptor biphenyls as revealed by fluorescence. J. Phys. Chem. A 103, 3388–3401.

    Article  CAS  Google Scholar 

  39. M. Maus and W. Rettig (2000). The influence of conformation and energy gaps on optical transition moments in D–A biphenyls. Chem. Phys. 261, 323–337.

    Article  CAS  Google Scholar 

  40. M. Maus and W. Rettig (2001). Comparison of the bandshape and lifetime data analysis of temperature-dependent fluorescence measurements. A new approach to reveal an excited state conformational equilibrium. Phys. Chem. Chem. Phys. 3, 5430–5437.

    Article  CAS  Google Scholar 

  41. M. Maus and W. Rettig (2002). The excited state equilibrium between two rotational conformers of a sterically restricted donor–acceptor biphenyl as characterised by global fluorescence decay analysis. J. Phys. Chem. A 106, 2104–2111.

    Article  CAS  Google Scholar 

  42. Z. R. Grabowski, K. Rotkiewicz, and W. Rettig (2003). Structural changes accompanying intramolecular electron transfer—Focus on T.I.C.T. States and structures. Chem. Rev. 103, 3899–4031.

    Article  PubMed  Google Scholar 

  43. J. P. Malval, J. P. Morand, R. Lapouyade, W. Rettig, G. Jonusauskas, J. Oberlé, C. Trieflinger, and J. Daub (2004). Structural modelling of optical and electrochemical properties of 4-aminodiphenylamines—Optoelectronic studies on a polyaniline repeating unit. Photochem. Photobiol. Sci. 3, 939–945.

    Article  PubMed  CAS  Google Scholar 

  44. M. Maus and K. Rurack (2000). Monitoring pH and Solvent proticity with donor–acceptor-substituted biphenyls: A new approach towards highly sensitive and powerful fluorescent probes by tuning the molecular structure. New J. Chem. 24, 677–686.

    Article  CAS  Google Scholar 

  45. R. M. Izatt, K. Pawlak, J. S.Bradshaw, and R. L. Bruening (1991). Thermodynamic and kinetic data for macrocycle interaction with cations and anions. Chem. Rev. 91, 1721–2085.

    Article  CAS  Google Scholar 

  46. L. Fabbrizzi and A. Poggi (1995). Sensors and switches from supramolecular chemistry. Chem. Soc. Rev. 24,197–202.

    Article  CAS  Google Scholar 

  47. Gmelins Handbuch der Anorganischen Chemie (1927). Chor, 8th ed., VCH, Berlin.

  48. G. J. Fox, J. D. Hepworth, and G. Hallas (1976). J. Chem. Soc. Perkin I, 68.

  49. U. Resch-Genger, D. Pfeifer, C. Monte, W. Pilz, A. Hoffmann, M. Spieles, K. Rurack, J. Hollandt, D. Taubert, B. Schönenberger, and P. Nording (2005). Traceability in fluorometry: Part ii. Spectral fluorescence standards. J. Fluoresc. 15, 315–336.

    Article  PubMed  CAS  Google Scholar 

  50. J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic/Plenum Press, New York.

    Google Scholar 

  51. D. V. Connor and D. Phillips (1984). Time-Correlated Single-Photon Counting, Academic Press, London.

    Google Scholar 

  52. W. Weigel, W. Rettig, M. Dekhtyar, C. Modrakowski, M. Beinhoff, and A. D. Schlüter (2003). Dual fluorescence of phenyl and biphenyl substituted Pyrene derivatives. J. Phys. Chem. A 107, 5941–5947.

    Article  CAS  Google Scholar 

  53. Globals Unlimited, Laboratory of Fluorescence Dynamics at the University of Illinois, (1992).

  54. J. N. Demas and K. D. Mielenz (1982). Optical Radiation Measurements, Vol. 3, 195 ed., Academic Press, New York.

  55. J. Bourson and B. Valeur (1989). Ion-responsive fluorescent compounds. 2. Cation-steered intramolecular charge transfer in a crowned merocyanine. J. Phys. Chem. 93, 3871–3876.

    Article  CAS  Google Scholar 

  56. N. Miyara and A. Suzuki (1995). Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457–2493.

    Article  Google Scholar 

  57. M. Beinhoff, W. Weigel, M. Jurczok, W. Rettig, C. Modrakowski, I. Brüdgam, H. Hartl, and A. D. Schlüter (2001). Synthesis and spectroscopic properties of Arene substituted pyrene derivatives as model compounds for fluorescent polarity probes. Eur. J. Org. Chem. 3819–3829.

  58. T. Ishiyama, Y. Itoh, T. Kitno, and N. Miyaura (1997). Synthesis of arylboronates via the palladium(0)-catalyzed cross-coupling reaction of tetra(alkoxo)diborons with aryl triflates. Tetrahedron Lett. 38, 3447.

    Article  CAS  Google Scholar 

  59. A. M. Costero, J. Sanchis, S. Gil, V. Sanz, and J. A. G. Williams (2005). Poly(amine) biphenyl derivatives as fluorescent sensors for anions and cations. J. Mater. Chem. 15, 2848–2853.

    Article  CAS  Google Scholar 

  60. S. Hashimoto and J. K. Thomas (1984). Effect of environment on decay pathways of the singlet excited state of N,N,N′,N′-tetramethylbenzidine. J. Phys. Chem. 88, 4044–4049.

    Article  CAS  Google Scholar 

  61. J. F. Letard, S. Delmond, R. Lapouyade, D. Braun, W. Rettig, and M. Kreissler (1995). New intrinsic fluoroionophores with dual fluorescence: DMABN-Crown4 and DMABN-Crown5. Rec. Trav. Chim. Pays-Bas. 114, 517–527.

    CAS  Google Scholar 

  62. F. Bernardi, M. Olivucci, and M. A. Robb (1997). The role of conical intersections and excited state reaction paths in photochemical pericyclic reactions. J. Photochem. Photobiol. A 105, 365–371.

    Article  CAS  Google Scholar 

  63. J. Michl and V. Bonacic-Koutecký (1990). Electronic Aspects of Organic Photochemistry, Wiley, New York.

    Google Scholar 

  64. G. Hennrich, H. Sonnenschein, and U. Resch-Genger (1999). Redox switchable fluorescent probe selective for either Hg(II) or Cd(II) and Zn(II). J. Am. Chem. Soc. 121, 5073–5074.

    Article  CAS  Google Scholar 

  65. K. Rurack, M. Kollmannsberger, U. Resch-Genger, and J. Daub (2000). A selective and sensitive fluoroionophore for HgII, AgI, and CuII with virtually decoupled fluorophore and receptor units. J. Am. Chem. Soc. 122, 968–969.

    Article  CAS  Google Scholar 

  66. L. Prodi, C. Bargossi, M. Montalti, N. Zaccheroni, N. Su, J. S. Bradshaw, R. M. Izatt, and P. B. Savage (2000). An effective fluorescent chemosensor for mercury ions. J. Am. Chem. Soc. 122, 6769–6770.

    Article  CAS  Google Scholar 

  67. L. Prodi, F. Bolletta, M. Montalti, and N. Zaccheroni (2000). Luminescent chemosensors for transition metal ions. Coord. Chem. Rev. 205, 59–83.

    Article  CAS  Google Scholar 

  68. K. Rurack, U. Resch-Genger, and W. Rettig (1998). Global analysis of time-resolved emission—A powerful tool for the analytical discrimination of chemically similar Zn(II) and Cd(II) complexes. J. Photochem. Photobiol. A 118, 143–149.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial support from the Deutsche Forschungsgemeinschaft (DFG: grant RE387/8-3 and 436UKR113/24-3) is gratefully acknowledged. We are indebted to Dr. D. Pfeifer for provision of the spectral correction curves, Drs. K. Rurack and W. Weigel for help with the time-resolved fluorescence measurements, and Mrs. A. Rothe for help with the figures.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Bricks, J., Resch-Genger, U. et al. CT-Operated Bifunctional Fluorescent Probe Based on a Pretwisted Donor–Donor–Biphenyl. J Fluoresc 16, 337–348 (2006). https://doi.org/10.1007/s10895-005-0035-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-0035-y

Key Words:

Navigation