Skip to main content
Log in

Time-Resolved Detection of Hot Electron-Induced Electrochemiluminescence of Fluorescein in Aqueous Solution

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Strong electrogenerated chemiluminescence (ECL) of fluorescein is generated during cathodic pulse polarization of oxide-covered aluminum electrodes and the resulting decay of emission is so sluggish that time-resolved detection of fluorescein is feasible. The present ECL in aqueous solution is based on the tunnel emission of hot electrons into the aqueous electrolyte solution, which probably results in the generation of hydrated electrons and hydroxyl radicals acting as redox mediators. The successive one-electron redox steps with the primary radicals result in fluorescein in its lowest excited singlet state. The method allows the detection of fluorescein (or its derivatives containing usable linking groups to biomolecules) over several orders of magnitude of concentration with detection limits well below nanomolar concentration level. The detection limits can still be lowered, e.g., by addition of azide or bromide ions as coreactants. The results suggest that the derivatives of fluorescein, such as fluorescein isothiocyanate (FITC), can be detected by time-resolved measurements and thus be efficiently used as electrochemiluminescent labels in bioaffinity assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. Kulmala, A. Kulmala, T. Ala-Kleme, and J. Pihlaja (1998). Primary cathodic steps of electrogenerated chemiluminescence of lanthanide(III) chelates at oxide-covered aluminum electrodes in aqueous solution. Anal. Chim. Acta 367(1–3), 17–31.

    Article  CAS  Google Scholar 

  2. S. Kulmala, M. Hakansson, A.-M. Spehar, A. Nyman, J. Kankare, K. Loikas, T. Ala-Kleme, and J. Eskola (2002). Heterogeneous and homogeneous electrochemiluminoimmunoassays of hTSH at disposable oxide-covered aluminum electrodes, Anal. Chim. Acta 458(2), 271–280.

    Article  CAS  Google Scholar 

  3. M. Helin, L. Väre, M. Håkansson, P. Canty, H.-P. Hedman, L. Heikkilä, T. Ala-Kleme, J. Kankare, and S. Kulmala (2002). Electrochemiluminoimmunoassay of hTSH at disposable oxide-coated n-silicon electrodes, J. Electroanal. Chem. 524/525, 176–183.

    Article  Google Scholar 

  4. P. Canty, L. Väre, M. Håkansson, A.-M. Spehar, D. Papkovsky, T. Ala-Kleme, J. Kankare, and S. Kulmala (2002). Time-resolved electrochemiluminescence of platinum(II) coproporphyrin, Anal. Chim. Acta 453(2), 269–279.

    Article  Google Scholar 

  5. S. Kulmala, T. Ala-Kleme, M. Latva, K. Loikas, and H. Takalo (1998). Hot electron-induced electrogenerated chemiluminescence of rare earth(III) chelates at oxide-covered aluminum electrodes, J. Fluoresc. 8(1), 59–65.

    Article  CAS  Google Scholar 

  6. Q. Jiang, M. Håkansson, A.-M. Spehar, J. Ahonen, T. Ala-Kleme, and S. Kulmala (in press). Hot electron-induced time-resolved electrogenerated chemiluminescence of a europium(III) label in fully aqueous solutions. Anal. Chim. Acta

  7. J. S. Poole, C. M. Hadad, M. S. Platz, Z. P. Fredin, L. Pickard, E. L. Guerrero, M. Kessler, G. Chowdhury, D. Kotandeniya, and K. S. Gates (2002). Photochemical electron transfer reactions of tirapazamine. Photochem. Photobiol. 75(4), 339–345.

    Article  PubMed  CAS  Google Scholar 

  8. S. Kulmala and J. Suomi (2003). Current status of modern analytical luminescence methods. Anal. Chim. Acta 500(1–2), 21–69.

    Article  CAS  Google Scholar 

  9. K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, and T. Nagano (2001). Rational design of fluorescein-based fluorescent probes. Mechanism-based design of a maximumfluorescence probe for singlet oxygen. J. Am. Chem. Soc. 123(11), 2530–2536.

    Article  PubMed  CAS  Google Scholar 

  10. B. Ou, M. Hampsch-Woodill, and R. L. Prior (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 49(10), 4619–4626.

    Article  PubMed  CAS  Google Scholar 

  11. B. Ou, M. Hampsch-Woodill, J. Flanagan, E. K. Deemer, R. L. Prior, and D. Huang (2002). Novel fluorometric assay for hydroxyl radical prevention capacity using fluorescein as the probe. J Agric. Food Chem. 50(10), 2772–2777.

    Article  PubMed  CAS  Google Scholar 

  12. J. Nikokavouras, C. Papadopoulos, A. Perry, and G. Vassilopoulos (1976). Chemiluminescence of a luminol-fluorescein amide. Chim. Chron. 5(3), 223–229.

    CAS  Google Scholar 

  13. A. Kahn and M. Kasha (1966). Physical theory of chemiluminescence in systems evolving molecular oxygen. J. Am. Chem. Soc. 88(7), 1574–1576.

    Article  Google Scholar 

  14. J. Hadjianestis and J. Nikokavouras (1992). Luminol chemiluminescence in micellar media: Energy transfer to fluorescein, J. Photochem. Photobiol. A 69(3), 337–343.

    Article  CAS  Google Scholar 

  15. M. Voicescu, M. Vasilescu, and A. Meghea (2000). Energy transfer from the aminophtalate dianion to fluorescein. J. Fluoresc. 10(3), 229–236.

    Article  CAS  Google Scholar 

  16. J. Burguera and A. Townshend (1980). Determination of ng/ml levels of sulphide by a chemiluminescent reaction. Talanta 27(4), 309–314.

    Article  CAS  PubMed  Google Scholar 

  17. W. Pruetz, K. Sommermeyer, and E. Land (1966). Light emission after pulse radiolysis of aqueous solution of dyes. Nature 212(5066), 1043–1044.

    Article  CAS  Google Scholar 

  18. W. Pruetz and E. Land (1967). Phosphorescence of aqueous dye solutions after irradiation with electron pulses. Biophysik 3(4), 349–360.

    Article  PubMed  CAS  Google Scholar 

  19. S. Kulmala, T. Ala-Kleme, L. Heikkilä, and L. Väre (1997). Energetic electrochemiluminescence of (9-fluorenyl)methanol induced by injection of hot electrons into aqueous electrolyte solution. J. Chem. Soc. Faraday Trans. 93(17), 3107–3113.

    Article  CAS  Google Scholar 

  20. T. Ala-Kleme, S. Kulmala, and M. Latva (1997). Generation of free radicals and electrochemiluminescence at pulse-polarized oxide-covered silicon electrodes in aqueous solutions, Acta. Chem. Scand. 51(5), 541–546.

    CAS  Google Scholar 

  21. S. Kulmala, T. Ala-Kleme, H. Joela, and A. Kulmala (1998). Hot electron injection into aqueous electrolyte solution from thin insulating film-coated electrodes. J. Radioanal. Nucl. Chem. 232(1/2), 91–95.

    Article  CAS  Google Scholar 

  22. M. Håkansson, Q. Jiang, M. Helin, M. Putkonen, A. J. Niskanen, S. Pahlberg, T. Ala-Kleme, L. Heikkilä, J. Suomi, and S. Kulmala (2005). Cathodic Tb(III) chelate electrochemiluminescence at oxide-covered magnesium and n-ZnO:Al/MgO composite electrodes, Electrochim. Acta. 51(2), 289–296.

    Google Scholar 

  23. G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross (1988). Critical Review of rate constants for reactions of hydrated electrons. Chemical Kinetic Data Base for Combustion Chemistry. Part 3: Propane. J. Phys. Chem. Ref. Data 17(2), 513–886.

    CAS  Google Scholar 

  24. T. Ala-Kleme, S. Kulmala, L. Väre, P. Juhala, and M. Helin (1999). Hot Electron-Induced Electrogenerated Chemiluminescence of Ru(bpy)3 2+ Chelate at Oxide-Covered Aluminum Electrodes, Anal. Chem. 71(24), 5538–5543.

    CAS  Google Scholar 

  25. S. Kulmala, T. Ala-Kleme, A. Kulmala, D. Papkovsky, and K. Loikas (1998). Cathodic electrogenerated chemiluminescence of luminol at disposable oxide-covered aluminum electrodes, Anal. Chem. 70(6), 1112–1118.

    CAS  Google Scholar 

  26. M. Helin, Q. Jiang, H. Ketamo, M. Håkansson, A.-M. Spehar, S. Kulmala, and T. Ala-Kleme (2005). Electrochemiluminescence of coumarin derivatives induced by injection of hot electrons into aqueous electrolyte solution, Electrochim. Acta. 51(4), 725–730.

    Google Scholar 

  27. D. Arnold, E. Cartier, and D. DiMaria (1994). Theory of high-field electron transport and impact ionization in silicon dioxide, Phys. Rev. B 49(15), 10278–10297.

    Article  CAS  Google Scholar 

  28. D. DiMaria and M. Fischetti (1988). Vacuum emission of hot electrons from silicon dioxide at low temperatures, J. Appl. Phys. 64(9), 4683–4691.

    Article  CAS  Google Scholar 

  29. D. DiMaria and E. Cartier (1995). Mechanism for stress-induced leakage currents in thin silicon dioxide films, J. Appl. Phys. 78(6), 3883–3894.

    Article  CAS  Google Scholar 

  30. J. Kankare, K. Fälden, S. Kulmala, and K. Haapakka (1992). Cathodically induced time-resolved lanthanide(III) electroluminescence at stationary aluminum disk electrodes, Anal. Chim. Acta 256(1), 17–28.

    Article  CAS  Google Scholar 

  31. S. Tajima (1977). Luminescence, breakdown and colouring of anodic oxide films on aluminum, Electrochim. Acta 22(9), 995–1011.

    CAS  Google Scholar 

  32. A. Despic and V. Parkhutik (1989). In J. Bockris, R. White, and B. Conway (Eds.). Modern Aspects of Electrochemistry, Vol. 20, Plenum, New York, pp. 400–503, and the references cited therein.

  33. W. A. Pruetz and E. J. Land (1974), Chemiluminescent reactions after pulse radiolysis of aqueous dye solutions. Absolute yields. J. Phys. Chem. 78(13). 1251–1253.

    Article  CAS  Google Scholar 

  34. Q. Jiang, M. Kotiranta, K. Langel, J. Suomi, M. Håkansson, A.-M. Spehar, T. Ala-Kleme, J. Eskola, and S. Kulmala (2005), Ruthenium(II) tris(2,2′-bipyridine) chelate as a chemiluminophore in extrinsic lyoluminescences of aluminum and magnesium in aqueous solution. Anal. Chim. Acta 541(1–2), 177–184.

    Article  CAS  Google Scholar 

  35. W. Koppenol and J. Butler (1985). Energetics of interconversion reactions of oxyradicals, Adv. Free Rad. Biol. Med. 1(1), 91–131.

    Article  CAS  Google Scholar 

  36. D. Stanbury (1989). Reduction potentials involving inorganic free radicals in aqueous solution. Adv. Inorg. Chem. 33, 69–138.

    Article  CAS  Google Scholar 

  37. W. Koppenol (1987), Thermodynamics of reactions involving oxyradicals and hydrogen peroxide, Bioelectrochem. Bioenerg 18(1–3). 3–11.

    Article  CAS  Google Scholar 

  38. P. Neta (1976), Application of radiation techniques to the study of organic radicals, Adv. Phys. Org. Chem. 12, 223–297.

    CAS  Google Scholar 

  39. R. Brooke, R. Bisby, and F. Ismail (2004). Characterisation and quantification of phenolic antioxidants using the “Oxygen Radical Absorbance Capacity” (ORAC) assay for antioxidants. Free Radicals and Excited States in Aqueous and Non-Aqueous Solutions, 27th–29th October 2004, p. 4., CCLRC Daresbury Laboratory.

  40. P. Cordier and L. I. Grossweiner (1968). Pulse radiolysis of aqueous fluorescein, J. Phys. Chem. 72(6), 2018–2026.

    Article  CAS  Google Scholar 

  41. P. S. Rao and E. J. Hayon (1973). Reduction of dyes by free radicals in solution. Correlation between reaction rate constants and redox potentials. J. Phys. Chem. 77(23), 2753–2756.

    Article  CAS  Google Scholar 

  42. P. Neta, R. E. Huie, and A. B. Ross (1988). Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys Chem. Ref. Data 17(3), 1027–1284.

    CAS  Google Scholar 

  43. J. Kankare, K. Haapala, S. Kulmala, V. Näntö, J. Eskola, and H. Takalo (1992). Immunoassay by time-resolved electrogenerated luminescence, Anal. Chim. Acta 266(2), 205–212.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Suomi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ylinen, T., Suomi, J., Helin, M. et al. Time-Resolved Detection of Hot Electron-Induced Electrochemiluminescence of Fluorescein in Aqueous Solution. J Fluoresc 16, 27–33 (2006). https://doi.org/10.1007/s10895-005-0023-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-0023-2

KEY WORDS:

Navigation