Skip to main content
Log in

Highly Sensitive and Selective Fluorescent Probe for Detection of Fe3+ Based on Rhodamine Fluorophore

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A simple rhodamine-based fluorescent probe L1, which exhibits good response to Fe3+ in CH3CN/Tris-HCl buffer (v:v = 9:1, pH 7.00) solution. With the experimental conditions optimized, the probe L1 could be used as a fluorescent and colorimetric probe for Fe3+ with the detection limit as low as 0.29 μM. The binding constant (Ka) of Fe3+ binding to the probe L1 were calculated to be 1.4 × 1010 M−2, respectively from a Benesi-Hildebrand plot. With the addition of Fe3+, the CH3CN/Tris-HCl buffer (v:v = 9:1, pH 7.00) solution of the probe L1 exhibited a obviously color change from transparent to pink with distinctive changes. More importantly, the recognition process of the probe L1 for Fe3+ was chemically reversible on the addition AcO.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hu Y, Zhao F, Hu S, Dong Y, Li D, Su Z (2017) A novel turn-on colorimetric and fluorescent sensor for Fe3+ and its application in living cells. J Photochem Photobiol, A 332:351–356. https://doi.org/10.1016/j.jphotochem.2016.09.006

    Article  CAS  Google Scholar 

  2. Wang Y, Hou X, Li Z, Zhou Q, Lei M, Hu S, Wu X, Li C, Xu Z, Wang Y (2018) A pyrrole-containing hydrazone and its Cu2+ complex: an easily accessible optical chemosensor system for the successive detection of Zn2+/Cu2+ and pyrophosphate. Anal Methods 10(48):5790–5796. https://doi.org/10.1039/c8ay01993b

    Article  CAS  Google Scholar 

  3. Shen B-X, Qian Y (2017) Click synthesis, Hg2+ sensor and Intramolecular fluorescence resonance energy transfer in novel BODIPY dendrons. Sensors Actuators B Chem 239:226–234. https://doi.org/10.1016/j.snb.2016.08.004

    Article  CAS  Google Scholar 

  4. Tsai H-J, Su Y-C, Wan C-F, Wu A-T (2018) A selective colorimetric fluorescent chemosensor for Hg2+ in aqueous medium and in the solid state. J Lumin 194:279–283. https://doi.org/10.1016/j.jlumin.2017.10.023

    Article  CAS  Google Scholar 

  5. Wang Y, Hou X, Liu C, Lei M, Zhou Q, Hu S, Xu Z (2019) Highly sensitive and selective ESIPT-based near-infrared fluorescent probe for detection of Pd2+. Inorg Chem Commun 101:135–141. https://doi.org/10.1016/j.inoche.2019.01.026

    Article  CAS  Google Scholar 

  6. Yang Y, Gao C-Y, Zhang N, Dong D (2016) Tetraphenylethene functionalized rhodamine chemosensor for Fe3+ and Cu2+ ions in aqueous media. Sensors Actuators B Chem 222:741–746. https://doi.org/10.1016/j.snb.2015.08.125

    Article  CAS  Google Scholar 

  7. Kim H-S, Angupillai S, Son Y-A (2016) A dual chemosensor for both Cu2+ and Al3+: a potential Cu2+ and Al3+ switched YES logic function with an INHIBIT logic gate and a novel solid sensor for detection and extraction of Al3+ ions from aqueous solution. Sensors Actuators B Chem 222:447–458. https://doi.org/10.1016/j.snb.2015.08.001

    Article  CAS  Google Scholar 

  8. Wang L, Li W, Zhi W, Wang Y, Han J, Cao Z, Ni L, Li H, Jing J (2018) A water-soluble Fe3+ selective fluorescent turn-on chemosensor: preparation, theoretical study and its optical vitro imaging. J Lumin 196:379–386. https://doi.org/10.1016/j.jlumin.2017.12.061

    Article  CAS  Google Scholar 

  9. Zhou F, Leng T-H, Liu Y-J, Wang C-Y, Shi P, Zhu W-H (2017) Water-soluble rhodamine-based chemosensor for Fe3+ with high sensitivity, selectivity and anti-interference capacity and its imaging application in living cells. Dyes Pigments 142:429–436. https://doi.org/10.1016/j.dyepig.2017.03.057

    Article  CAS  Google Scholar 

  10. Bao X, Cao X, Nie X, Xu Y, Guo W, Zhou B, Zhang L, Liao H, Pang T (2015) A new selective fluorescent chemical sensor for Fe3+ based on rhodamine B and a 1,4,7,10-tetraoxa-13-azacyclopentadecane conjugate and its imaging in living cells. Sensors Actuators B Chem 208:54–66. https://doi.org/10.1016/j.snb.2014.10.127

    Article  CAS  Google Scholar 

  11. Guo L, Liu XY, Wang H, Chen Q, Wang G, Luo K, Mi Q, Zhou Y, Zhang J (2015) Iron(III)-selective chelation-enhanced fluorescence sensing for in vivo imaging applications. Chem Asian J 10(9):1898–1902. https://doi.org/10.1002/asia.201500415

    Article  CAS  PubMed  Google Scholar 

  12. Yan F, Zheng T, Shi D, Zou Y, Wang Y, Fu M, Chen L, Fu W (2015) Rhodamine-aminopyridine based fluorescent sensors for Fe3+ in water: synthesis, quantum chemical interpretation and living cell application. Sensors Actuators B Chem 215:598–606. https://doi.org/10.1016/j.snb.2015.03.096

    Article  CAS  Google Scholar 

  13. Chen X, Sun W, Bai Y, Zhang F, Zhao J, Ding X (2018) Novel rhodamine Schiff base type naked-eye fluorescent probe for sensing Fe3+ and the application in cell. Spectrochim Acta A Mol Biomol Spectrosc 191:566–572. https://doi.org/10.1016/j.saa.2017.10.029

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Chang H-Q, Wu W-N, Zhao X-L, Yang Y, Xu Z-Q, Xu Z-H, Jia L (2017) Rhodamine-2-thioxoquinazolin-4-one conjugate: a highly sensitive and selective chemosensor for Fe3+ ions and crystal structures of its Ag(I) and hg(II) complexes. Sensors Actuators B Chem 239:60–68. https://doi.org/10.1016/j.snb.2016.07.170

    Article  CAS  Google Scholar 

  15. Wang L, Ye D, Li W, Liu Y, Li L, Zhang W, Ni L (2017) Fluorescent and colorimetric detection of Fe(III) and cu(II) by a difunctional rhodamine-based probe. Spectrochim Acta A Mol Biomol Spectrosc 183:291–297. https://doi.org/10.1016/j.saa.2017.04.056

    Article  CAS  PubMed  Google Scholar 

  16. Wang K-P, Lei Y, Zhang S-J, Zheng W-J, Chen J-P, Chen S, Zhang Q, Zhang Y-B, Hu Z-Q (2017) Fluorescent probe for Fe(III) with high selectivity and its application in living cells. Sensors Actuators B Chem 252:1140–1145. https://doi.org/10.1016/j.snb.2017.07.184

    Article  CAS  Google Scholar 

  17. Jin X, Wang S, Yin W, Xu T, Jiang Y, Liao Q, Xia X, Liu J (2017) A highly sensitive and selective fluorescence chemosensor for Fe3+ based on rhodamine and its application in vivo imaging. Sensors Actuators B Chem 247:461–468. https://doi.org/10.1016/j.snb.2017.03.084

    Article  CAS  Google Scholar 

  18. Shen B-X, Qian Y (2018) Building Rhodamine-BODIPY fluorescent platform using click reaction: naked-eye visible and multi-channel chemodosimeter for detection of Fe3+ and Hg2+. Sensors Actuators B Chem 260:666–675. https://doi.org/10.1016/j.snb.2017.12.146

    Article  CAS  Google Scholar 

  19. Min KS, Manivannan R, Son Y-A (2018) Rhodamine-fluorene based dual channel probe for the detection of Hg2+ ions and its application in digital printing. Sensors Actuators B Chem 261:545–552. https://doi.org/10.1016/j.snb.2018.01.178

    Article  CAS  Google Scholar 

  20. Yang Z, She M, Ma S, Yin B, Liu P, Liu X, Zhao S, Li J (2017) Rhodamine based guanidinobenzimidazole functionalized fluorescent probe for tetravalent tin and its application in living cells imaging. Sensors Actuators B Chem 242:872–879. https://doi.org/10.1016/j.snb.2016.09.170

    Article  CAS  Google Scholar 

  21. Xu L, Wei S, Diao Q, Ma P, Liu X, Sun Y, Song D, Wang X (2017) Sensitive and selective rhodamine-derived probes for fluorometric sensing of pH and colorimetric sensing of Cu2+. Sensors Actuators B Chem 246:395–401. https://doi.org/10.1016/j.snb.2017.02.093

    Article  CAS  Google Scholar 

  22. Wen J, Xia P, Zheng Z, Xu Y, Li H, Liu F, Sun S (2017) Naphthalimide-rhodamine based fluorescent probe for ratiometric sensing of cellular pH. Chin Chem Lett 28(10):2005–2008. https://doi.org/10.1016/j.cclet.2017.09.014

    Article  CAS  Google Scholar 

  23. Wang F, Feng C, Lu L, Xu Z, Zhang W (2017) A ratiometric fluorescent probe for rapid and sensitive detection of biothiols in fetal bovine serum. Talanta 169:149–155. https://doi.org/10.1016/j.talanta.2017.03.080

    Article  CAS  PubMed  Google Scholar 

  24. Ren D, Liu Y, Liu X, Li Z, Li H, Yang X-F (2018) Spirohydrazine rhodamine as a fluorescent chemodosimeter for the selective detection of cu(II) ions and its application in live cell imaging. Sensors Actuators B Chem 255:2321–2328. https://doi.org/10.1016/j.snb.2017.09.048

    Article  CAS  Google Scholar 

  25. Tang X, Han J, Wang Y, Ni L, Bao X, Wang L, Zhang W (2017) A multifunctional Schiff base as a fluorescence sensor for Fe3+ and Zn2+ ions, and a colorimetric sensor for Cu2+ and applications. Spectrochim Acta A Mol Biomol Spectrosc 173:721–726. https://doi.org/10.1016/j.saa.2016.10.028

    Article  CAS  PubMed  Google Scholar 

  26. Lv L, Diao Q (2017) A highly selective and sensitive rhodamine-derived fluorescent probe for detection of Cu2+. Spectrochim Acta A Mol Biomol Spectrosc 179:221–226. https://doi.org/10.1016/j.saa.2017.02.053

    Article  CAS  PubMed  Google Scholar 

  27. Majumdar A, Lim CS, Kim HM, Ghosh K (2017) New six-membered pH-insensitive Rhodamine Spirocycle in selective sensing of Cu2+ through C-C bond cleavage and its application in cell imaging. ACS Omega 2(11):8167–8176. https://doi.org/10.1021/acsomega.7b01324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang Y, Shen R, Wang Y-Z, Qiu F-Z, Feng Y, Tang X-L, D-c B, Zhang G-L, Liu W-S (2018) A selective turn-on fluorescent sensor for hg (II) in living cells and tissues. Sensors Actuators B Chem 255:3479–3487. https://doi.org/10.1016/j.snb.2017.09.180

    Article  CAS  Google Scholar 

  29. Petdum A, Panchan W, Sirirak J, Promarak V, Sooksimuang T, Wanichacheva N (2018) Colorimetric and fluorescent sensing of a new FRET system via [5]helicene and rhodamine 6G for Hg2+ detection. New J Chem 42(2):1396–1402. https://doi.org/10.1039/c7nj04129b

    Article  CAS  Google Scholar 

  30. Kraithong S, Sirirak J, Soisuwan K, Wanichacheva N, Swanglap P (2018) Enhancing sensitivity of novel Hg2+ fluorescent sensor via Plasmonic enhancement of silver nanoparticles. Sensors Actuators B Chem 258:694–703. https://doi.org/10.1016/j.snb.2017.11.049

    Article  CAS  Google Scholar 

  31. Tang Y, Jiang G-F (2017) Toward a highly sensitive and selective indole-rhodamine-based light-up probe for Hg2+ and its application in living cells. Tetrahedron Lett 58(29):2846–2849. https://doi.org/10.1016/j.tetlet.2017.06.024

    Article  CAS  Google Scholar 

  32. Su W, Yuan S, Wang E (2017) A Rhodamine-based fluorescent Chemosensor for the detection of Pb2+, Hg2+ and Cd2+. J Fluoresc 27(5):1871–1875. https://doi.org/10.1007/s10895-017-2124-0

    Article  CAS  PubMed  Google Scholar 

  33. Ji R, Liu A, Shen S, Cao X, Li F, Ge Y (2017) An indolizine–rhodamine based FRET fluorescence sensor for highly sensitive and selective detection of Hg2+ in living cells. RSC Adv 7(65):40829–40833. https://doi.org/10.1039/c7ra07938a

    Article  CAS  Google Scholar 

  34. Erdemir S, Yuksekogul M, Karakurt S, Kocyigit O (2017) Dual-channel fluorescent probe based on bisphenol A-rhodamine for Zn2+ and Hg2+ through different signaling mechanisms and its bioimaging studies. Sensors Actuators B Chem 241:230–238. https://doi.org/10.1016/j.snb.2016.10.082

    Article  CAS  Google Scholar 

  35. Vallu RK, Velugula K, Doshi S, Chinta JP (2018) Colorimetric and fluorimetric detection of Hg2+ and Cr2+ by boronic acid conjugated rhodamine derivatives: mechanistic aspects and their bio-imaging application in bacterial cells. Spectrochim Acta A Mol Biomol Spectrosc 189:556–562. https://doi.org/10.1016/j.saa.2017.08.052

    Article  CAS  PubMed  Google Scholar 

  36. Yang Y, Feng Y, Wang Y-Z, Qiu F-Z, Tang X-L, Zhang G-L, Liu W-S (2017) A novel ratiometric fluorescent probe for selective detection of Hg2+, Cr2+ and Al3+ and its bioimaging application in living cells. Sensors Actuators B Chem 253:1055–1062. https://doi.org/10.1016/j.snb.2017.07.025

    Article  CAS  Google Scholar 

  37. Nayab PS, Shkir M (2017) Rapid and simultaneous detection of Cr (III) and Fe (III) ions by a new naked eye and fluorescent probe and its application in real samples. Sensors Actuators B Chem 251:951–957. https://doi.org/10.1016/j.snb.2017.05.102

    Article  CAS  Google Scholar 

  38. Bhanja AK, Mishra S, Naskar K, Maity S, Das Saha K, Sinha C (2017) Specific recognition of Cr3+ under physiological conditions by allyl substituted appendage rhodamine and its cell-imaging studies. Dalton Trans 46(47):16516–16524. https://doi.org/10.1039/c7dt03560h

    Article  CAS  PubMed  Google Scholar 

  39. Zhang E, Ju P, Li Q, Hou X, Yang H, Yang X, Zou Y, Zhang Y (2018) A novel rhodamine 6G-based fluorescent and colorimetric probe for Bi3+: synthesis, selectivity, sensitivity and potential applications. Sensors Actuators B Chem 260:204–212. https://doi.org/10.1016/j.snb.2017.12.109

    Article  CAS  Google Scholar 

  40. Liu T, Wan X, Yao Y (2018) Dual sensitive and selective sensor for Pb2+ and Al3+ with distinctive fluorescence response. Sensors Actuators B Chem 254:1094–1100. https://doi.org/10.1016/j.snb.2017.07.114

    Article  CAS  Google Scholar 

  41. Li L, Guan R, Guo M, Ning P, Shao R, Meng X (2018) A FRET based two-photon fluorescent probe for ratiometric detection of Pd2+ in living cells and in vivo. Sensors Actuators B Chem 254:949–955. https://doi.org/10.1016/j.snb.2017.07.157

    Article  CAS  Google Scholar 

  42. Zhang Y, Balamurugan R, Lin J, Fitriyani S, Liu J, Emelyanenko A (2017) Pd2+ fluorescent sensors based on amino and imino derivatives of rhodamine and improvement of water solubility by the formation of inclusion complexes with beta-cyclodextrin. Analyst 142(9):1536–1544. https://doi.org/10.1039/c6an02594c

    Article  CAS  PubMed  Google Scholar 

  43. Srisuratsiri P, Kanjanasirirat P, Chairongdua A, Kongsaeree P (2017) Reversible rhodamine-alkyne Au3+ −selective chemosensor and its bioimaging application. Tetrahedron Lett 58(32):3194–3199. https://doi.org/10.1016/j.tetlet.2017.07.014

    Article  CAS  Google Scholar 

  44. Sakthivel P, Sekar K, Sivaraman G, Singaravadivel S (2017) Rhodamine Diaminomaleonitrile conjugate as a novel colorimetric fluorescent sensor for recognition of Cd2+ ion. J Fluoresc 27(3):1109–1115. https://doi.org/10.1007/s10895-017-2046-x

    Article  CAS  PubMed  Google Scholar 

  45. Manna A, Sain D, Guchhait N, Goswami S (2017) FRET based selective and ratiometric detection of Al(iii) with live-cell imaging. New J Chem 41(23):14266–14271. https://doi.org/10.1039/c7nj03079g

    Article  CAS  Google Scholar 

  46. Liu K, Guo P, Liu L, Shi X (2017) Fluorescence enhancement of a novel pyrazine coupled rhodamine derivative for the paramagnetic Co2+ detection. Sensors Actuators B Chem 250:667–672. https://doi.org/10.1016/j.snb.2017.04.111

    Article  CAS  Google Scholar 

  47. Li Z, Zhao JL, Wu YT, Mu L, Zeng X, Jin Z, Wei G, Xie N, Redshaw C (2017) Highly selective recognition of Al3+ and I ions using a bi-functional fluorescent probe. Org Biomol Chem 15(40):8627–8633. https://doi.org/10.1039/c7ob02301d

    Article  CAS  PubMed  Google Scholar 

  48. Li J, Han S (2017) A tricorn-rhodamine fluorescent chemosensor for detection of Co2+ ions. Luminescence 32(8):1448–1455. https://doi.org/10.1002/bio.3344

    Article  CAS  PubMed  Google Scholar 

  49. Huang Q, Zhang Q, Wang E, Zhou Y, Qiao H, Pang L, Yu F (2016) A new "off-on" fluorescent probe for Al3+ in aqueous solution based on rhodamine B and its application to bioimaging. Spectrochim Acta A Mol Biomol Spectrosc 152:70–76. https://doi.org/10.1016/j.saa.2015.07.062

    Article  CAS  PubMed  Google Scholar 

  50. Yue X, Li C, Yang Z (2018) A novel colorimetric and fluorescent probe for trivalent cations based on rhodamine B derivative. J Photochem Photobiol A Chem 351:1–7. https://doi.org/10.1016/j.jphotochem.2017.10.005

    Article  CAS  Google Scholar 

  51. Wang W, Li Y, Reddya P, Zhang X, Yuan D (2017) A facile coordination-assisted method to fabricate a FRET-basedfluorescent probe for ratiometric analysis with improved selectivity. Sensors Actuators B Chem 252:159–164. https://doi.org/10.1016/j.snb.2017.06.010

    Article  CAS  Google Scholar 

  52. Cao X, Zhang F, Bai Y, Ding X, Sun W (2019) A highly selective "turn-on" fluorescent probe for detection of Fe3+ in cells. J Fluoresc. https://doi.org/10.1007/s10895-019-02351-x

  53. Ni J, Li B, Zhang L, Zhao H, Jiang H (2015) A fluorescence turn-on probe based on rhodamine derivative and its functionalized silica material for Hg2+-selective detection. Sensors Actuators B Chem 250:174–180. https://doi.org/10.1016/j.snb.2015.03.057

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No.21001040), the Joint Program for Fostering Talents of National Natural Science Foundation of China and Henan Province (U1304202 and U1604124), the Science and Technology Department of Henan Province (162300410011, 152102210343), the Education Department of Henan Province (No.15B150016, 2014GGJS-045 and 15HASTIT002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Xu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1. A simple rhodamine-based fluorescent probe L1 for Fe3+ and the detection limit of 2.37 μM.

2. The probe L1 showed highly selective and sensitive response toward Fe3+ in CH3CN/Tris-HCl buffer solution.

3. The probe L1 shows a 2:1 binding mode under physiological pH condition.

4. The recognition process of the probe L1 for Fe3+ was chemically reversible on the addition AcO-.

Electronic supplementary material

ESM 1

(DOC 2037 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Guo, R., Hou, X. et al. Highly Sensitive and Selective Fluorescent Probe for Detection of Fe3+ Based on Rhodamine Fluorophore. J Fluoresc 29, 645–652 (2019). https://doi.org/10.1007/s10895-019-02378-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02378-0

Keywords

Navigation