Skip to main content
Log in

First Observation of Surface Plasmon-Coupled Emission Due to LED Excitation

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Detection limitations for fluorescence methods are normally determined by the phenomenon itself rather than the sensitivity of the instrumentation. These limitations make it necessary to have high sensitivity, high cost equipment causing fluorescence methods to remain lab-oriented. Alleviation of the limitations can be achieved through the phenomenon of surface plasmon-coupled emission (SPCE), which displays enhanced, directional, polarized fluorescence. Here we present the excitation of SPCE from Rhodamine B with a light-emitting diode (LED). Incorporating the gains in sensitivity due to SPCE with LED excitation, it could be possible to design low-cost, high-sensitivity sensors that would allow measurements to be performed in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy, 2nd ed., Plenum, New York.

  2. T. Liebermann and W. Knoll (2000). Surface plasmon field-enhanced spectroscopy. Colloids Surf. A 171, 115–130.

    Article  CAS  Google Scholar 

  3. J. R. Lakowicz (2004). Radiative decay engineering. 3. Surface plasmon-coupled directional emission. Anal. Biochem. 324, 153–169.

    Article  PubMed  CAS  Google Scholar 

  4. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz (2004). Radiative decay engineering. 4. Experimental studies of surface plasmon-coupled directional emission. Anal. Biochem. 324, 170–182.

    Article  PubMed  CAS  Google Scholar 

  5. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski (2003). Directional surface plasmon-coupled emission: A new method for high sensitivity detection. Biochem. Biophys. Res. Commun. 307, 435–439.

    Article  PubMed  CAS  Google Scholar 

  6. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz (2004). Surface plasmon-coupled emission using gold film. J. Phys. Chem. B 108, 12568–12574.

    Article  CAS  Google Scholar 

  7. I. Gryczynski, J. Malicka, K. Nowaczyk, Z. Gryczynski, and J. R. Lakowicz (2004). Effects of sample thickness on the optical properties of surface plasmon-coupled emission. J. Phys. Chem. B 108, 12073–12083.

    Article  CAS  Google Scholar 

  8. J. Zhang, Z. Gryczynski, and J. R. Lakowicz (2004). First observation of surface plasmon-coupled electrochemiluminescence. Chem. Phys. Lett. 393, 483–487.

    Article  CAS  Google Scholar 

  9. I. Gryczynski, J. Malicka, Z. Gryczynski, K. Nowaczyk, and J. R. Lakowicz (2004). Ultraviolet surface plasmon-coupled emission using thin aluminium films. Anal. Chem. 76, 4076–4081.

    Article  PubMed  CAS  Google Scholar 

  10. N. Calander (2004). Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures. Anal. Chem. 76, 2168–2173.

    Article  PubMed  CAS  Google Scholar 

  11. S. Ekgasit, C. Thammachareon, and W. Knoll (2004). Surface plasmon resonance spectroscopy based on evanescent field treatment. Anal. Chem. 76, 561–568.

    Article  PubMed  CAS  Google Scholar 

  12. A. D. Boardman (Ed.) (1982). Electromagnetic Surface Modes, Wiley, New York, 775 p.

  13. H. Raether (1988). Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, New York, 136 p.

  14. A. Liebsh (1997). Electronic Excitations at Metal Surfaces, Plenum, New York, 336 p.

  15. B. Liedberg and I. Lundstrom (1993). Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sens. Actuators B 11, 63–72.

    Article  Google Scholar 

  16. B. L. Frey, C. E. Jordan, S. Kornguth, and R. M. Corn (1995). Control of the specific adsorption of proteins onto gold surface with poly(l-lysine) monolayers. Anal. Chem. 67, 4452–4457.

    Article  CAS  Google Scholar 

  17. Z. Salamon, H. A. Macleod, and G. Tollin (1997). Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: Theoretical principles. Biochim. Biophys. Acta 1331, 117–129.

    PubMed  CAS  Google Scholar 

  18. K. A. Peterlinz, R. M. Georgiadis, T. M. Herne, and M. J. Tarlov (1997). Observation of hybridization of thiol-tethered DNA using two-color surface plasmon resonance spectroscopy. J. Am. Chem. Soc. 119, 3401–3402.

    Article  CAS  Google Scholar 

  19. F. Yu, D. Yao, and W. Knoll (2003). Surface plasmon field-enhanced fluorescence spectroscopy studies of the interaction between an antibody and its surface-coupled antigen. Anal. Chem. 75, 2610–2617.

    Article  PubMed  CAS  Google Scholar 

  20. J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz (2003). DNA hybridization using surface plasmon-coupled emission. Anal. Chem. 75, 6629–6633.

    Article  PubMed  CAS  Google Scholar 

  21. J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz (2004). Use of surface plasmon-coupled emission to measure DNA hybridization. J. Biomol. Screening 9, 208–215.

    Article  CAS  Google Scholar 

  22. E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz (2004). Multi-wavelength immunoassays using surface plasmon-coupled emission. Biochem. Biophys. Res. Commun. 313, 721–726.

    Article  PubMed  CAS  Google Scholar 

  23. E. Matveeva, Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz (2004). Immunoassays based on directional surface plasmon-coupled emission. J. Immunol. Methods 286, 133–140.

    Article  PubMed  CAS  Google Scholar 

  24. H. Raether (1977). Surface plasma oscillations and their applications. In G. Hass, M. H. Francombe, and R. W. Hoffman (Eds.), Physics of Thin Films, Advances in Research and Development, vol. 9, Academic Press, New York, pp. 145–261.

  25. I. Pockrand (1978). Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf. Sci. 72, 577–588.

    Article  CAS  Google Scholar 

  26. K. Vasilev, W. Knoll, and M. Kreiter (2004). Fluorescence intensities of chromophores in front of a thin metal film. J. Chem. Phys. 120, 3439–3445.

    Article  PubMed  CAS  Google Scholar 

  27. F. Yu, B. Persson, S. Lofas, and W. Knoll (2004). Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy. J. Am. Chem. Soc. 126, 8902–8903.

    Article  PubMed  CAS  Google Scholar 

  28. Y. Kostov, D. S. Smith, L. Tolosa, G. Rao, I. Gryczynski, Z. Gryczynski, J. Malicka, and J. R. Lakowicz. Directional surface plasmon-coupled directional emission from a 3 nanometer green fluorescent protein monolayer. Biotech. Prog. (in press).

  29. T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll (2002). Surface-plasmon fluorescence spectroscopy. Adv. Funct. Mater. 12, 575–86.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was made possible by funding from the following grant awards: NSF-BES 0517785 and the National Center for Research Resources, RR-08119. Zygmunt Gryczynski also acknowledges support from Biomolecular Interactions Technologies Center (BITC, New Hampshire).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govind Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D.S., Kostov, Y., Rao, G. et al. First Observation of Surface Plasmon-Coupled Emission Due to LED Excitation. J Fluoresc 15, 895–900 (2005). https://doi.org/10.1007/s10895-005-0021-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-0021-4

KEY WORDS:

Navigation