Skip to main content

Advances in Plasmonic Substrate-Coupled Fluorescence

  • Chapter
  • First Online:
Handbook of Materials Science, Volume 1

Abstract

Plasmonic substrates that enable molding of light in nanoscale dimensions have made a deep impact in the field of fluorescence spectroscopy. By integration of fluorophores with plasmonic nanostructures it has become possible to utilize the favourable attributes of surface plasmon resonances to bring about extraordinary changes in fluorescence properties. The concepts of “plasmophore” and “spectro-plasmonics” have undoubtedly benefitted the field of fluorescence by providing enhanced intensities, photostability and directional, wavelength-resolved emission. This Chapter describes the fundamentals of plasmon-fluorophore interactions with metal nanoparticles that support localized surface plasmons (LSPs) and thin metal films that support propagating surface plasmon polaritons (SPPs). It outlines various ways of fabricating plasmonic nanostructures for fluorescence coupling, newly emerging plasmonic materials beyond Au and Ag, and interesting applications of plasmon-coupled fluorescence in sensing, imaging, single molecule detection and display technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbay, N., Lakowicz, J.R.: Ray K (2012) Distance-dependent metal-enhanced intrinsic fluorescence of proteins using polyelectrolyte layer-by-layer assembly and aluminum nanoparticles. J. Phys. Chem. C 116, 10766–10773 (2012)

    Article  CAS  Google Scholar 

  • Aouani, H., Mahboub, O., Bonod, N., Devaux, E., Popov, E., Rigneault, H., Ebbesen, T.W., Wenger, J.: Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations. Nano Lett. 11, 637–644 (2011)

    Article  CAS  Google Scholar 

  • Atwater, H.A.: The promise of plasmonics. Sci. Am. 17, 56–63 (2007)

    Article  Google Scholar 

  • Badugu, R., Szmacinski, H., Ray, K., Descrovi, E., Ricciardi, S., Zhang, D., Chen, Y., Huo, Y., Lakowicz, J.R.: Fluorescence spectroscopy with metal−dielectric waveguides. J. Phys. Chem. C 119, 6245–16255 (2015)

    Article  Google Scholar 

  • Bardhan, R., Grady, N.K., Cole, J.R., Joshi, A., Halas, N.: Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. ACS Nano 3, 744–752 (2009)

    Article  CAS  Google Scholar 

  • Botequim, D., Silva, I.I.R., Serra, S.G., Melo, E.P., Prazeres, D.M.F., Costa, S.M.B., Paulo, P.M.R.: Fluorescent dye nano-assemblies by thiol attachment directed to the tips of gold nanorods for effective emission enhancement. Nanoscale 12, 6334–6345 (2020)

    Article  CAS  Google Scholar 

  • Cao, S.H., Weng, Y.H., Xie, K.X., Wang, Z.C., Pan, X.H., Chen, M., Zhai, Y.Y., Xu, L.T., Li, Y.Q.: Surface plasmon coupled fluorescence-enhanced interfacial “molecular beacon” to probe biorecognition switching: an efficient, versatile, and facile signaling biochip. ACS ApplBio Mater 2, 625–629 (2019)

    Article  CAS  Google Scholar 

  • Chen, Y., Zhang, D., Han, L., Rui, G., Wang, X., Wang, P., Ming, H.: Surface-plasmon-coupled emission microscopy with a polarization converter. Opt. Lett. 38, 736–738 (2013)

    Article  Google Scholar 

  • Choi, J.H., Lim, J., Shin, M., Paek, S.H., Choi, J.W.: CRISPR-Cas12a-based nucleic acid amplification-free DNA biosensor via Au nanoparticle-assisted metal-enhanced fluorescence and colorimetric analysis. Nano Lett. 21, 693−699 (2020)

    Google Scholar 

  • Dutta Choudhury, S., Ray, K., Lakowicz, J.R.: Silver nanostructures for fluorescence correlation spectroscopy: reduced volumes and increased signal intensities. J. Phys. Chem. Lett. 3, 2915–2919 (2012a)

    Article  CAS  Google Scholar 

  • Dutta Choudhury, S., Badugu, R., Ray, K., Lakowicz, J.R.: Silver−gold nanocomposite substrates for metal-enhanced fluorescence: ensemble and single-molecule spectroscopic studies. J. Phys. Chem. C 116, 5042–5048 (2012b)

    Article  CAS  Google Scholar 

  • Dutta Choudhury, S., Badugu, R., Lakowicz, J.R.: Surface-plasmon induced polarized emission from Eu(III)—a class of luminescent lanthanide ions. Chem. Commun. 50, 9010–9013 (2014)

    Article  CAS  Google Scholar 

  • Dutta Choudhury, S., Badugu, R., Lakowicz, J.R.: Directing fluorescence with plasmonic and photonic structures. Acc. Chem. Res. 48, 2171–2180 (2015a)

    Article  CAS  Google Scholar 

  • Dutta Choudhury, S., Badugu, R., Ray, K., Lakowicz, J.R.: Directional emission from metal−dielectric−metal structures: effect of mixed metal layers, dye location, and dielectric thickness. J. Phys. Chem. C 119, 3302–3311 (2015b)

    Article  CAS  Google Scholar 

  • Fontaine, N., Picar-Lafond, A., Asselin, J., Boudreau, D.: Thinking outside the shell: novel sensors designed from plasmon-enhanced fluorescent concentric nanoparticles. Analyst 145, 5965–5980 (2020)

    Article  CAS  Google Scholar 

  • García de Abajo 2014 García de Abajo, F.J.: Graphene plasmonics: challenges and opportunities. ACS Photon. 1, 135–152 (2014)

    Google Scholar 

  • Gryczynski, I., Malicka, J., Gryczynski, Z., Lakowicz, J.R.: Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Anal. Biochem. 324, 170–182 (2004)

    Article  CAS  Google Scholar 

  • Gu, X., Qiu, T., Zhang, W., Chu, P.K.: Light-emitting diodes enhanced by localized surface plasmon resonance. Nanoscale Res. Lett. 6, 199 (2011)

    Article  Google Scholar 

  • Gutiérrez, Y., Brown, A.S., Moreno, F., Losurdo, M.: Plasmonics beyond noble metals: exploiting phase and compositional changes for manipulating plasmonic performance. J. Appl. Phys. 128, 080901 (2020)

    Article  Google Scholar 

  • Hageneder, S., Jungbluth, V., Soldo, R., Petri, C., Matthias, P., Kreivi, M., Weihaüsel, A., Jonas, U., Dostalek, J.: Responsive hydrogel binding matrix for dual signal amplification in fluorescence affinity biosensors and peptide microarrays. ACS Appl. Mater. Interfaces 13, 27645–27655 (2021)

    Article  CAS  Google Scholar 

  • Hao, Q., Du, D., Wang, C., Li, W., Huang, H., Li, J., Qiu, T., Chu, P.K.: Plasmon-induced broadband fluorescence enhancement on Al-Ag bimetallic substrates. Sci. Rep. 4, 6014 (2014)

    Article  CAS  Google Scholar 

  • Jiao, X., Wang, Y., Blair, S.: Plasmonic enhancement of UV fluorescence. In: Geddes, C.D., (ed.), Surface Plasmon Enhanced, Coupled and Controlled Fluorescence, Chap 18, pp. 295–308. John Wiley & Sons, Inc. USA (2017)

    Google Scholar 

  • Khatua, S., Paulo, P.M.R., Yuan, H., Gupta, A., Zijlstra, P., Orrit, M.: Resonant plasmon enhancement of single-molecule fluorescence by individual gold nanorods. ACS Nano 8, 4440–4449 (2014)

    Article  CAS  Google Scholar 

  • Kinkhabwala, A., Yu, Z., Fan, S., Avlasevich, Y., Müllen, K., Moerner, W.E.: Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photonics 3, 654–657 (2009)

    Article  CAS  Google Scholar 

  • Lakowicz, J.R.: Radiative decay engineering 3. Surface plasmon-coupled directional emission. Anal. Biochem. 324, 153–169 (2004)

    Article  CAS  Google Scholar 

  • Lakowicz, J.R.: Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 337, 171–194 (2005)

    Article  CAS  Google Scholar 

  • Lakowicz, J.R.: Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1, 5–33 (2006a)

    Article  CAS  Google Scholar 

  • Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn. Publisher, Springer, Singapore (2006b)

    Book  Google Scholar 

  • Li, M., Cushing, S.K., Wu, N.: Plasmon-enhanced optical sensors. Analyst 140, 193–406 (2015)

    CAS  Google Scholar 

  • Li, J.F., Li, C.Y., Aroca, R.F.: Plasmon-enhanced fluorescence spectroscopy. Chem. Soc. Rev. 46, 3962–3979 (2017)

    Article  CAS  Google Scholar 

  • Link, S., El-Sayed, M.A.: Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 54, 331–366 (2003)

    Article  CAS  Google Scholar 

  • Liu, J., Jalali, M., Mahshid, S., Wachsmann-Hogiu, S.: Are plasmonic optical biosensors ready for use in point-of-need applications? Analyst 145, 364–384 (2020)

    Article  CAS  Google Scholar 

  • Lu, X., Ye, G., Deep, P., Chiechi, R.C., Orrit, M.: Quantum yield limits for the detection of single-molecule fluorescence enhancement by a gold nanorod. ACS Photon. 7, 2498–2505 (2020)

    Article  CAS  Google Scholar 

  • Luan, J., Morrissey, J.J., Wang, Z., Derami, H.G., Liu, K.K., Cao, S., Jiang, Q., Wang, C., Kharasch, E.D., Naik, R.R., Singamaneni, S.: Light: science & applications 7, 29 (2018)

    Google Scholar 

  • Maier, S.A.: Plasmonics: Fundamentals and Applications. Publisher, Springer, USA (2007)

    Book  Google Scholar 

  • Matveeva, E.G., Gryczynski, Z., Malicka, J., Lukomska, J., Makowiec, S., Berndt, K.W., Lakowicz, J.R., Gryczynskia, I.: Directional surface plasmon-coupled emission: application for an immunoassay in whole blood. Anal. Biochem. 344, 161–167 (2005)

    Article  CAS  Google Scholar 

  • Mishra, P., Debnath, A.K., Dutta Choudhury, S.: Titanium nitride as an alternative and reusable plasmonic substrate for fluorescence coupling. Phys. Chem. Chem. Phys. 24, 6256–6265 (2022)

    Article  CAS  Google Scholar 

  • Naik, G.V., Shalaev, V.M., Boltasseva, A.: Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3329 (2013)

    Google Scholar 

  • Neumann, T., Johansson, M.-L., Kambhampati, D., Knoll, W.: Surface-plasmon fluorescence spectroscopy. Adv. Funct. Mater. 12, 575–586 (2002)

    Google Scholar 

  • Okamoto, K., Funato, M., Kawakami, Y., Tamada, K.: High-efficiency light emission by means of exciton–surface-plasmon coupling. J. Photochem. Photobiol. C Photochem. Rev. 32, 58–77 (2017)

    Article  CAS  Google Scholar 

  • Orozco, C.A., Liu, J.G., Knight, M.W., Wang, Y., Day, J., Nordlander, P., Halas, N.J.: Fluorescence enhancement of molecules inside a gold nanomatryoshka. Nano Lett. 14, 2926–2933 (2014)

    Article  Google Scholar 

  • Pang, Y., Rong, Z., Wang, J., Xiao, R., Wang, S.: A fluorescent aptasensor for H5N1 influenza virus detection based-on the core–shell nanoparticles metal-enhanced fluorescence (MEF). Biosens. Bioelect. 66, 527–532 (2015)

    Article  CAS  Google Scholar 

  • Ray, K., Badugu, R., Lakowicz, J.R.: Distance-dependent metal-enhanced fluorescence from Langmuir Blodgett monolayers of alkyl-NBD derivatives in silver island films. Langmuir 22, 8374–8378 (2006)

    Article  CAS  Google Scholar 

  • Rycenga, M., Cobley, C.M., Zeng, Z., Li, W., Moran, C.H., Zhang, Q., Qin, D., Xia, Y.: Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011)

    Article  CAS  Google Scholar 

  • Sathish, S., Kostov, Y., Rao, G.: High-resolution surface plasmon coupled resonant filter for monitoring of fluorescence emission from molecular multiplexes. Appl. Phys. Lett. 94, 223113 (2009)

    Article  Google Scholar 

  • Schuller, J.A., Barnard, E.S., Cai, W., Jun, Y.C., White, J.S., Brongersma, M.L.: Plasmonics for extreme light concentration and manipulation. Nat. Mat. 9, 193–204 (2010)

    Google Scholar 

  • Semeniak, D., Cruz, D.F., Chilkoti, A., Mikkelsen, M.H.: Plasmonic fluorescence enhancement in diagnostics for clinical tests at point-of-care: a review of recent technologies. Adv. Mater. 2107986 (2022)

    Google Scholar 

  • Song, H.Y., Wong, T.I., Guo, S., Deng, J., Tan, C., Gorelik, S., Zhou, X.: Nanoimprinted thrombin aptasensor with picomolar sensitivity based on plasmon excited quantum dots. Sens Actuat. B Chem. 221, 207–216 (2015)

    Article  CAS  Google Scholar 

  • Su, Q., Wesner, D., Schönherr, H., Nöll, G.: Molecular beacon modified sensor chips for oligonucleotide detection with optical readout. Langmuir 30, 14360–14367 (2014)

    Article  CAS  Google Scholar 

  • Su, Q., Jiang, C., Gou, G., Long, Y.: Surface plasmon-assisted fluorescence enhancing and quenching: from theory to application. ACS Appl. Bio Mater. 4, 4684–4705 (2021)

    Article  CAS  Google Scholar 

  • Wang, Y., Huang, C.J., Jonas, U., Wei, T., Dostalek, J., Knoll, W.: Biosensor based on hydrogel optical waveguide spectroscopy. Biosens. Bioelectron. 25, 1663–1668 (2010)

    Article  CAS  Google Scholar 

  • Wang, R., Zhang, D., Zhu, L., Wen, X., Chen, J., Kuang, C., Liu, X., Wang, P., Ming, H., Badugu, R., Lakowicz, J.R.L.: Selectable surface and bulk fluorescence imaging with plasmon-coupled waveguides. J. Phys. Chem. C 119, 22131–22136 (2015)

    Article  CAS  Google Scholar 

  • Wang, M., Wang, M., Zheng, G., Dai, Z., Ma, Y.: Recent progress in sensing application of metal nanoarchitecture-enhanced fluorescence. Nanoscale Adv 3, 2448–2465 (2021)

    Article  CAS  Google Scholar 

  • Winkler, P.M., Regmi, R., Flauraud, V., Brugger, J., Rigneault, H., Wenger, J., García-Parajo, M.F.: Optical antenna-based fluorescence correlation spectroscopy to probe the nanoscale dynamics of biological membranes. J. Phys. Chem. Lett. 9, 110–119 (2018)

    Article  CAS  Google Scholar 

  • Xu, L.T., Chen, M., Weng, Y.H., Xie, K.X., Wang, J., Cao, S.H., Li, Y.Q.: Label-free fluorescent nanofilm sensor based on surface plasmon coupled emission: in situ monitoring the growth of metal−organic frameworks. Anal. Chem. 94, 6430–6435 (2022)

    Article  CAS  Google Scholar 

  • You, C.Y., Lin, L.H., Wang, J.Y., Zhang, F.L., Radjenovic, P., Yang, Z., Tian, Z.Q., Li, J.F.: Plasmon-enhanced fluorescence of phosphors using shell-isolated nanoparticles for display technologies. ACS Appl. Nano Mater. 3, 5846–5854 (2020)

    Article  CAS  Google Scholar 

  • Yu, H., Peng, Y., Yang, Y., Li, Z.Y.: Plasmon-enhanced light-matter interactions and applications. Npj Comput Mater 5, 45 (2019)

    Article  Google Scholar 

  • Zang, F., Su, Z., Zhou, L., Konduru, K., Kaplan, G., Chou, S.Y.: Ultrasensitive Ebola virus antigen sensing via 3D nanoantenna arrays. Adv. Mater. 1902331 (2019)

    Google Scholar 

  • Zhang, J., Fu, Y., Mahdavi, F.: Bimetallic nanoshells for metal-enhanced fluorescence with broad band fluorophores. J. Phys. Chem. C 116, 24224–24232 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the support received from Bhabha Atomic Research Centre (BARC), Mumbai and the encouragement from Dr. A. K. Tyagi, Director, Chemistry Group, BARC, Dr. A. Kumar, Head, Radiation & Photochemistry Division, BARC, and Dr. A. C. Bhasikuttan, Head, Molecular Photochemistry Section, BARC. The author also thanks Prof. J. R. Lakowicz for introducing her to the world of plasmonics in fluorescence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmistha Dutta Choudhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta Choudhury, S. (2024). Advances in Plasmonic Substrate-Coupled Fluorescence. In: Ningthoujam, R.S., Tyagi, A.K. (eds) Handbook of Materials Science, Volume 1. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-99-7145-9_3

Download citation

Publish with us

Policies and ethics