Skip to main content
Log in

A New Fluorescent Squaraine Probe for the Measurement of Membrane Polarity

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

The present study was undertaken to evaluate the sensitivity of newly synthesized squaraine dye 1 to the changes in lipid bilayer physical properties and compared it with the well-known dye 2. Partitioning of the dye 1 into lipid bilayer was found to be followed by significant increase of its fluorescence intensity and red-shift of emission maximum, while intensity of the dye 2 fluorescence increased only slightly on going from aqueous to lipidic environment. This suggests that dye 1 is more sensitive to the changes in membrane properties as compared to dye 2. Partition coefficients of the dye 1 have been determined for the model membranes composed of zwitterionic phospholipid phosphatidylcholine (PC) and its mixtures with positively charged detergent cetyltrimethylammonium bromide (CTAB), anionic phospholipid cardiolipin (CL), and sterol (Chol). The spectral responses of the dye 1 in different liposome media proved to correlate with the increase of bilayer polarity induced by Chol and CL or its decrease caused by CTAB. It was concluded that dye 1 can be used as fluorescent probe for examining membrane-related processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. K. J. Kinnunen (1991). On the principle of functional ordering in biological membranes, Chem. Phys. Lipids 57, 375–399.

    Article  PubMed  CAS  Google Scholar 

  2. G. Cevc (1990). Membrane electrostatics, Biochim. Biophys. Acta 1031, 311–382.

    PubMed  CAS  Google Scholar 

  3. R. F. Epand, R. Kraayenhof, G. J. Sterk, H. Sang, and R. M. Epand (1996). Fluorescent probes of membrane surface properties, Biochim. Biophys. Acta 1284, 191–195.

    Article  PubMed  Google Scholar 

  4. B. R. Lentz (1993). Use of fluorescent probes to monitor molecular order and motion within liposome bilayers, Chem. Phys. Lipids 64, 99–116.

    Article  PubMed  CAS  Google Scholar 

  5. E. Terpetschnig, L. Patsenker, A. Tatarets, I. Fedyunyaeva, and I. Borovoy (2003). WO 03/087052 A2.

  6. B. Oswald, L. Patsenker, J. Duschl, H. Szmacinski, O. S. Wolfbeis, and E. Terpetschnig (1999). Synthesis, spectral properties and detection limits of reactive squarylium dyes, a new class of diode laser compatible fluorescent protein labels, Bioconjugate Chem. 10, 925–931.

    Article  CAS  Google Scholar 

  7. B. Mui, L. Chow, and M. J. Hope (2003). Extrusion technique to generate liposomes of defined size, Methods Enzymol. 367, 3–14.

    PubMed  CAS  Google Scholar 

  8. G. Bartlett (1959). Phosphorus assay in column chromatography, J. Biol. Chem. 234, 466–468.

    PubMed  CAS  Google Scholar 

  9. N. C. Santos, M. Prieto, and M. A. R. B. Castanho (2003). Quantifying molecular partition into model systems of biomembranes: An emphasis on optical spectroscopic methods, Biochim. Biophys. Acta 1612, 123–135.

    Article  PubMed  CAS  Google Scholar 

  10. V. G. Ivkov and G. N. Berestovsky (1981). Dynamic Structure of Lipid Bilayer, Nauka, Moscow.

    Google Scholar 

  11. J. Tocanne and J. Teissie (1990). Ionization of phospholipids and phospholipid - supported interfacial lateral diffusion of protons in membrane model systems, Biochim. Biophys. Acta 1031, 111–142.

    PubMed  CAS  Google Scholar 

  12. R. Flewelling and W. Hubbel (1986). The membrane dipole potential in a total membrane potential model. Application to hydrophobic ion interactions with membranes, Biophys. J. 49, 541–552.

    PubMed  CAS  Google Scholar 

  13. H. Heerklotz, H. Binder, G. Lantzsch, G. Klose, and A. Blume (1997). Lipid/detergent interaction thermodynamics as a function of molecular shape, J. Phys. Chem. B 101, 639–645.

    Article  CAS  Google Scholar 

  14. J. R. Lakowicz (1999). Principles of fluorescent spectroscopy, Plenum Press, New York.

    Google Scholar 

  15. V. A. Gaisenok and A. M. Sarzhevsky (1986). Anisotropy of absorption and luminescence of polyatomic molecules, Minsk, Belarus.

    Google Scholar 

  16. E. Laan, J. Killian, and B. Kruijff (2004). Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile, Biochim. Biophys. Acta 1666, 275–288.

    Article  PubMed  CAS  Google Scholar 

  17. M. C. Phillips (1972). The physical state of phospholipids and cholesterol in monolayers, bilayers and membranes, in Progress in Surface and Membrane Science, Vol. 5, Academic Press, New York, pp. 139–221.

  18. A. Kessel, N. Ben-Tal, and S. May (2001). Interactions of cholesterol with lipid bilayers: the preferred configuration and fluctuations, Biophys. J. 81, 643–658.

    PubMed  CAS  Google Scholar 

  19. P. Yeagle, W. Hutton, C. Huang, and R. Martin (1977). Phospholipid head-group conformations; intermolecular interactions and cholesterol effects, Biochemistry 16, 4344–4449.

    Article  PubMed  CAS  Google Scholar 

  20. M. Pasenkiewicz-Gierula, T. Rog, K. Kitamura, and A. Kusumi (2000). Cholesterol effects on the phosphatidylcholine bilayer polar region: a molecular simulation study, Biophys. J. 78, 1376–1389.

    PubMed  CAS  Google Scholar 

  21. C. Ho, S. Slater, and C. Stubbs (1995). Hydration and order in lipid bilayers, Biochemistry 34, 6188–6195.

    Article  PubMed  CAS  Google Scholar 

  22. G. L. Jendrasiak and J. Hasty (1974). The hydration of phospholipids, Biochim. Biophys. Acta 337, 79–91.

    PubMed  CAS  Google Scholar 

  23. H. Merkle, W. K. Subczynski, and A. Kusumi (1987). Dynamic fluorescence quenching studies on lipid mobilities in phosphotidylcholine-cholesterol membranes, Biochim. Biophys. Acta 897, 238–348.

    Article  PubMed  CAS  Google Scholar 

  24. R. Bittman and L. Blau (1972). The phospholipid-cholesterol interaction. Kinetics of water permeability in liposomes, Biochemistry 11, 4831–4839.

    Article  PubMed  CAS  Google Scholar 

  25. D. Bach and I. R. Miller (1998). Hydration of phospholipid bilayers in the presence and absence of cholesterol, Biochim. Biophys. Acta 1368, 216–224.

    Article  PubMed  CAS  Google Scholar 

  26. M. Straume and B. Litman (1987). Influence of cholesterol on equilibrium and dynamic bilayer structure of unsaturated acyl chain phosphatidylcholine vesicles as determined from higher order analysis of fluorescence anisotropy decay, Biochemistry 26, 5121–5126.

    Article  PubMed  CAS  Google Scholar 

  27. T. Rog and M. Pasenkiewicz-Gierula (2001). Cholesterol effects on the phosphatidylcholine bilayer nonpolar region: a molecular simulation study, Biophys. J. 81, 2190–2202.

    PubMed  CAS  Google Scholar 

  28. R. A. Demel and B. de Kruijff (1976). The function of sterols in membranes, Biochim. Biophys. Acta 457, 109–132.

    PubMed  CAS  Google Scholar 

  29. S. A. Pandit, D. Bostick, and M. L. Berkowitz (2004). Complexation of phosphatidylcholine lipids with cholesterol, Biophys. J. 86, 1345–1356.

    Article  PubMed  CAS  Google Scholar 

  30. E. Falck, M. Patra, M. Karttunen, M. T. Hyvonen, and I. Vattulainen (2004). Impact of cholesterol on voids in phospholipid membranes, J. Phys. Chem. 121, 12676–12689.

    Article  CAS  Google Scholar 

  31. J. M. Polson, I. Vattulainen, H. Zhul, and M. J. Zuckermann (2001). Simulation study of lateral diffusion in lipid-sterol bilayer mixtures, Eur. Phys. J. E 5, 485–497.

    Article  CAS  Google Scholar 

  32. A. Kusumi, W. K. Subczynski, M. Pasenkiewicz-Gierula, J. S. Hyde, and H. Merkle (1986). Spin-label studies on phosphatidylcholine-cholesterol membranes: effects of alkyl chain length and unsaturation in the fluid phase, Biochim. Biophys. Acta 854, 307–317.

    Article  PubMed  CAS  Google Scholar 

  33. H. Wennerstorm and E. Sparr (2003). Thermodynamics of membrane lipid hydration, Pure Appl. Chem. 75, 905–912.

    Article  Google Scholar 

  34. M. G. Alinchenko, V. P. Voloshin, N. N. Medvedev, M. Mezei, L. Partay, and P. Jedlovszky (2005). Effect of cholesterol on the properties of phospholipid membranes. 4. interatomic voids, J. Phys. Chem. B 109, 16490–16502

    Article  PubMed  CAS  Google Scholar 

  35. C. Karolis, H. G. L. Coster, T. C. Chilcott, and K. D. Barrow (1998). Differential effects of cholesterol and oxidised-cholesterol in egg lecithin bilayers, Biochim. Biophys. Acta 1368, 247–255.

    Article  PubMed  CAS  Google Scholar 

  36. J. R. Silvius (2003). Role of cholesterol in lipid raft formation: lessons from lipid model systems, Biochim. Biophys. Acta 1610, 174–183.

    Article  PubMed  CAS  Google Scholar 

  37. T. J. McIntosh, A. D. Magid, and S. A. Simon (1989). Cholesterol modifies the short-range repulsive interactions between phosphatidylcholine membranes, Biochemistry 28, 17–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the STCU grant no. U111. The authors are indebted to referees for valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriya M. Ioffe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioffe, V.M., Gorbenko, G.P., Domanov, Y.A. et al. A New Fluorescent Squaraine Probe for the Measurement of Membrane Polarity. J Fluoresc 16, 47–52 (2006). https://doi.org/10.1007/s10895-005-0018-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-0018-2

KEY WORDS:

Navigation