Skip to main content
Log in

Improvements to the High-Field-Side Transient CHI System on QUEST

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Transient coaxial helicity injection (CHI) is a promising candidate for solenoid-free plasma current start-up in a low-aspect-ratio tokamak in support of developing fully non-inductive scenarios. The aim of the transient CHI research on QUEST is to develop a reactor-relevant CHI design. On QUEST, a CHI discharge is initiated by driving current along magnetic field lines that connect an electrically insulated electrode plate (which is referred to as a bias electrode) to a vessel component at the bottom region of the spherical tokamak. In the first application of CHI on QUEST, the electrically insulated electrode plate was biased with respect to the outer vessel in a configuration referred to as low-field-side (LFS) injection. To maintain a narrow injector flux footprint width throughout the discharge, QUEST is now developing a high-field-side (HFS) injection configuration, in which the electrically insulated electrode plate is biased with respect to the inner vessel components. Through the implementation of a CHI-dedicated gas injection system, studies in the HFS injection configuration have now demonstrated good magnetic flux evolution into the vacuum vessel. Toroidal currents up to 43 kA have been achieved, and the generated current has increased in proportion to the magnetic flux connecting the electrodes. These results which show agreement with the CHI-scaling suggest that much higher levels of toroidal current can be generated on QUEST in an optimized CHI system in which the magnetic flux connecting the CHI electrodes is further increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y.-K.M. Peng, Phys. Plasmas 7, 1681 (2000)

    Article  ADS  Google Scholar 

  2. J.E. Menard et al., Nucl. Fusion 56, 106023 (2016)

    Article  ADS  Google Scholar 

  3. S.M. Kaye et al,, Nucl. Fusion 55, 104002 (2015)

    Article  ADS  Google Scholar 

  4. R. Raman et al,, Phys. Rev. Lett. 97, 175002 (2006)

    Article  ADS  Google Scholar 

  5. M. Gryaznevich et al,, Phys. Plasmas 10, 1803 (2003)

    Article  ADS  Google Scholar 

  6. B. Lloyd et al,, Nucl. Fusion 51, 094013 (2011)

    Article  ADS  Google Scholar 

  7. K. Hanada et al,, Plasma Sci. Technol. 13, 307 (2011)

    Article  ADS  Google Scholar 

  8. M. Ishiguro et al,, Phys. Plasmas 19, 062508 (2012)

    Article  ADS  Google Scholar 

  9. R. Raman, T.R. Jarboe, B.A. Nelson, V.A. Izzo, R.G. O’Neill, A.J. Redd, and Smith R. J, Phys. Rev. Lett. 90, 075005 (2003)

    Article  ADS  Google Scholar 

  10. D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd, A.C. Sontag, Phys. Rev. Lett. 102, 225003 (2009)

    Article  ADS  Google Scholar 

  11. M. Uchida, T. Yoshinaga, H. Tanaka, T. Maekawa, Phys. Rev. Lett. 104, 065001 (2010)

    Article  ADS  Google Scholar 

  12. K.J. Chung, Y.H. An, B.K. Jung, et al,, Plasma Sci. Technol. 15, 244 (2013)

    Article  ADS  Google Scholar 

  13. W. Choe, J. Kim, M. Ono, Nucl. Fusion 45, 1463 (2005)

    Article  ADS  Google Scholar 

  14. T.R. Jarboe, Fusion Sci. Technol. 15, 7 (1989)

    Article  ADS  Google Scholar 

  15. T.R. Jarboe, Plasma Phys. Controlled Fusion 36, 945 (1994)

    Article  ADS  Google Scholar 

  16. J.B. Taylor, Rev. of Modern Physics 58 No, 3 741 (1986)

    Article  ADS  Google Scholar 

  17. R. Raman, T.R. Jarboe, B.A. Nelson, W.T. Hamp, V.A. Izzo, R.G. O’Neill, A.J. Redd, P.E. Sieck, R.J. Smith, Phys. Pasmas 11, 2565 (2004)

    Article  ADS  Google Scholar 

  18. R. Raman et al,, Phys. Plasmas 18, 092504 (2011)

    Article  ADS  Google Scholar 

  19. B.A. Nelson et al,, Nucl. Fusion 51, 063008 (2011)

    Article  ADS  Google Scholar 

  20. K. Kuroda et al,, Plasma. Fusion. Res. 12, 1202020 (2017)

    Article  ADS  Google Scholar 

  21. K. Kuroda et al,, Plasma Phys. Controlled Fusion 60, 115001 (2018)

    Article  ADS  Google Scholar 

  22. K. Hanada et al,, Plasma. Fusion. Res. 5, S1007 (2010)

    Article  Google Scholar 

  23. K. Hanada et al,, Nucl. Fusion 57, 126061 (2017)

    Article  ADS  Google Scholar 

  24. K. Hanada et al,, Plasma Sci. Technol. 18, 1069 (2016)

    Article  ADS  Google Scholar 

  25. M. Hasegawa et al,, Plasma Fusion Res 16, 2402034 (2021)

    Article  ADS  Google Scholar 

  26. K. Hanada et al, 2020 Proc. on 28th IAEA Fusion Energy Conference (FEC 2020) EX/P7-14

  27. H. Idei et al,, Nucl. Fusion 57, 126045 (2017)

    Article  ADS  Google Scholar 

  28. H. Idei et al,, Fusion Eng. Des. 146, 1149 (2019)

    Article  Google Scholar 

  29. T. Onchi et al,, Phys. Plasmas 28, 022505 (2021)

    Article  ADS  Google Scholar 

  30. T. Onchi et al, 2020 Proc. on 28th IAEA Fusion Energy Conference (FEC 2020) EX/P7-15

  31. R. Raman, T. Brown, L.A. El-Guebaly, T.R. Jarboe, B.A. Nelson, J.E. Menard, Fusion Sci. Technol. 68, 674 (2015)

    Article  ADS  Google Scholar 

  32. K.C. Hammond, R. Raman, F.A. Volpe, Nucl. Fusion 58, 016013 (2018)

    Article  ADS  Google Scholar 

  33. R. Raman et al,, Nucl. Fusion 53, 073017 (2013)

    Article  ADS  Google Scholar 

  34. K. Kuroda et al,, Plasma. Fusion. Res. 16, 2402048 (2021)

    Article  ADS  Google Scholar 

  35. F. Ebrahimi, R. Raman, Phys. Rev. Lett. 114, 205003 (2015)

    Article  ADS  Google Scholar 

  36. D. Mueller et al., IEEE Trans. Plasma Sci. 38, 371 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by US DOE grants (DE-SC0019415, and DE-AC02-09CH11466), NIFS Collaboration Research Program (NIFS17KUTR130 and NIFS19KUTR137), the Collaborative Research Program of Research Institute for Applied Mechanics, Kyushu University (International Collaboration Frame-work 18 NU-1 and 19 NU-1 and early career scientists support work), and a Grant-in-Aid for JSPS Fellows (KAKENHI Grant No. 19K14685). This work was partially supported by a Grant-in-Aid for JSPS Fellows (KAKENHI Grant No. 17H06089), the NIFS Collaboration Research Program (NIFS19KUTR136 and NIFS13KUTR085), and Japan/US Cooperation in Fusion Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kuroda.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuroda, K., Raman, R., Hasegawa, M. et al. Improvements to the High-Field-Side Transient CHI System on QUEST. J Fusion Energ 41, 25 (2022). https://doi.org/10.1007/s10894-022-00338-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10894-022-00338-4

Keywords

Navigation