Skip to main content
Log in

Progress of Experimental Studies in the HL-2A Tokamak

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

During the last several years, the HL-2A experiment has made significant progress in the following areas: (1) lower-hybrid wave (LHW) heating and current drive, (2) plasma confinement and turbulent transport, (3) magnetohydrodynamic (MHD) instabilities and energetic particle physics and (4) H-mode and edge localized mode (ELM) control. The results show that the LHW system working in the co-current mode can reach higher driving efficiency and full non-inductive lower-hybrid current drive (LHCD) has been achieved. The intrinsic poloidal torque characterized by the divergence of the residual stress is deduced from synthesis for the first time. The dynamics of spectral symmetry breaking in drift wave turbulence is in good agreement with the development of the poloidal torque to drive the edge poloidal flow. The influence of the cross-phase dynamics on turbulent stress was also investigated. The ion internal transport barrier has been observed in the NBI-heated plasma, and inside the barrier the ion thermal transport is reduced to the neoclassical level. Besides, micro-turbulence is modulated by the rotation frequency of the magnetic island, and this modulation effect is related to a critical island width. Strong E × B shear is found at the island boundary. Three kinds of axisymmetric modes, beta-induced Alfven eigenmode (BAE), toroidal Alfven eigenmode (TAE) and the ellipticity-induced Alfven eigenmode (EAE), are found to be driven unstable by nonlinear mode coupling between Alfven eigenmodes and tearing mode which is well explained by the nonlinear gyrokinetic theory. The fishbone and tearing modes were actively controlled by the electron cyclotron resonance heating (ECRH). The dynamics of the edge plasma flows and turbulence during the L–I–H transition have been dedicatedly investigated. The geodesic acoustic mode (GAM) and limit cycle oscillation (LCO) coexist for a short time and disappear in the H-mode plasma with the increasing of E × B shear flow before the I–H transition, which plays an important role in the turbulence suppression. Different techniques, such as LHW, ECRH, resonant magnetic perturbation (RMP), and impurity seeding by the laser blow-off (LBO) and supersonic molecular beam injection (SMBI), have been successfully applied to control the large ELMs. It has been found that pedestal turbulence enhancement might be responsible for the observed mitigation effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Copyright 2018 IAEA

Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. X.R. Duan et al., Nucl. Fusion 49, B87 (2009)

    Google Scholar 

  2. L.W. Yan et al., Rev. Sci. Instrum. 88, 113504 (2017)

    ADS  Google Scholar 

  3. R. Ke, Y.F. Wu, G.R. McKee et al., Rev. Sci. Instrum. 89(10), 10D122 (2018)

    Google Scholar 

  4. S. Gong, Y. Yu, M. Xu et al., Plasma Sci. Technol 21(8), 084001 (2019)

    ADS  Google Scholar 

  5. K.R. Fang et al., Rev. Sci. Instrum. 90, 063503 (2019)

    ADS  Google Scholar 

  6. B.D. Yuan, Y. Yu, R.C. He et al., Rev. Sci. Instrum. 91(7), 073505 (2020)

    ADS  Google Scholar 

  7. T. Long et al., Rev. Sci. Instrum. 91(8), 083504 (2020)

    ADS  Google Scholar 

  8. X.R. Duan et al., Nucl. Fusion 57, 102013 (2017)

    ADS  Google Scholar 

  9. Y.P. Zhang et al., AIP Adv. 9, 085019 (2019)

    ADS  Google Scholar 

  10. B. Lu et al., RFPPC2019, May 14–17, 2019, Hefei China. I2–06

  11. Y. Peysson et al., Plasma Phys. Control. Fusion 42, B87 (2000)

    ADS  Google Scholar 

  12. M. Xu et al., Nucl. Fusion 59, 112017 (2019)

    ADS  Google Scholar 

  13. Y. Shen, J.Q. Dong, Z.B. Shi et al., Nucl. Fusion 59(4), 044001 (2019)

    ADS  Google Scholar 

  14. M. Xu, G.R. Tynan, P.H. Diamond et al., Phys. Rev. Lett. 108(24), 245001 (2012)

    ADS  Google Scholar 

  15. G.R. Tynan, M. Xu, P.H. Diamond et al., Nucl. Fusion 53(7), 073053 (2013)

    ADS  Google Scholar 

  16. K.J. Zhao, Y. Nagashima, P.H. Diamond et al., Phys. Rev. Lett. 117(14), 145002 (2016)

    ADS  Google Scholar 

  17. T. Long, P.H. Diamond, M. Xu et al., Nucl. Fusion 59(10), 106010 (2019)

    ADS  Google Scholar 

  18. Z.B. Guo, P.H. Diamond, Phys. Rev. Lett. 114(14), 145002 (2015)

    ADS  Google Scholar 

  19. D. Guo, L. Nie, R. Ke et al., Nucl. Fusion 58(2), 026015 (2018)

    ADS  Google Scholar 

  20. R. Hong, G.R. Tynan, P.H. Diamond et al., Nucl. Fusion 58(1), 016041 (2018)

    ADS  Google Scholar 

  21. J. Cheng, J.Q. Dong, K. Itoh et al., Phys. Rev. Lett. 110(26), 265002 (2013)

    ADS  Google Scholar 

  22. B. Yuan, M. Xu, Y. Yu, J. Instrum. 13(03), C03033 (2018)

    Google Scholar 

  23. J. Yuan, B. Yuan, M. Xu et al., Plasma Sci. Technol. 21(8), 084002 (2019)

    ADS  Google Scholar 

  24. J. Cheng, J.Q. Dong, L.W. Yan et al., Nucl. Fusion 53(9), 093008 (2013)

    ADS  Google Scholar 

  25. Z.Y. Cui et al., Nucl. Fusion 53, 093001 (2013)

    ADS  Google Scholar 

  26. Z.Y. Cui et al., Nucl. Fusion 58, 056012 (2018)

    ADS  Google Scholar 

  27. R. Dux, STRAHL user manual Technical Report No. 10/30 IPP Garching Germany (2006). http://pubman.mpdl.mpg.de/pubman/item/escidoc:2143869/component/escidoc:2143868/IPP_10_30.pdf. Accessed 30 Oct 2006

  28. D.L. Yu et al., Nucl. Fusion 56, 056003 (2016)

    ADS  Google Scholar 

  29. L. Bardóczi et al., Phys. Rev. Lett. 116, 215001 (2016)

    ADS  Google Scholar 

  30. W. Chen et al., Nucl. Fusion 57, 114003 (2017)

    ADS  Google Scholar 

  31. M. Jiang et al., Rev. Sci. Instrum. 84, 113501 (2013)

    ADS  Google Scholar 

  32. Z.B. Shi et al., Rev. Sci. Instrum. 87, 113501 (2016)

    ADS  Google Scholar 

  33. M. Jiang et al., Nucl. Fusion 58, 026002 (2018)

    ADS  Google Scholar 

  34. A.B. Navarro et al., Plasma Phys. Control. Fusion 59, 034004 (2017)

    ADS  Google Scholar 

  35. M. Jiang et al., Nucl. Fusion 59, 066019 (2019)

    ADS  Google Scholar 

  36. R. Fitzpatrick, Phys. Plasmas 2, 825 (1995)

    ADS  Google Scholar 

  37. O. Pan et al., Nucl. Fusion 55, 113010 (2015)

    ADS  Google Scholar 

  38. W. Chen et al., Nucl. Fusion 56, 044001 (2016)

    ADS  Google Scholar 

  39. X.Q. Ji et al., Sci. Rep. 6, 32697 (2016)

    ADS  Google Scholar 

  40. P.W. Shi et al., Phys. Plasma 25, 062506 (2018)

    ADS  Google Scholar 

  41. W. Chen et al., Nucl. Fusion 59, 096037 (2019)

    ADS  Google Scholar 

  42. X.L. Zhu et al., Nucl. Fusion 60, 046023 (2020)

    ADS  Google Scholar 

  43. L.M. Yu et al., Nucl. Fusion 57, 036023 (2017)

    ADS  Google Scholar 

  44. L.M. Yu et al., Nucl. Fusion 53, 053002 (2013)

    ADS  Google Scholar 

  45. W. Chen et al., Nucl. Fusion 50, 084008 (2010)

    ADS  Google Scholar 

  46. G. Meng et al., Phys. Plasma 22, 092510 (2015)

    ADS  Google Scholar 

  47. P.W. Shi et al., Nucl. Fusion 59, 066015 (2019)

    ADS  Google Scholar 

  48. F. Zonca et al., Plasma Phys. Control. Fusion 38, 2011–2028 (1996)

    ADS  Google Scholar 

  49. W. Chen et al., Nucl. Fusion 56, 036018 (2016)

    ADS  Google Scholar 

  50. W. Chen et al., Nucl. Fusion 58, 056004 (2018)

    ADS  Google Scholar 

  51. L. Chen, F. Zonca, Phys. Plasma 20, 055402 (2013)

    ADS  Google Scholar 

  52. P.W. Shi et al., Nucl. Fusion 59, 086001 (2019)

    ADS  Google Scholar 

  53. Z. Chang et al., Nucl. Fusion 35, 1469 (1995)

    ADS  Google Scholar 

  54. K.G. McClements et al., Nucl. Fusion 42, 1155 (2002)

    ADS  Google Scholar 

  55. W. Chen et al., Europhys Lett. 107, 25001 (2014)

    ADS  Google Scholar 

  56. Y.P. Zhang et al., Nucl. Fusion 55, 113024 (2015)

    ADS  Google Scholar 

  57. P.W. Shi et al., Nucl. Fusion 60, 064001 (2020)

    ADS  Google Scholar 

  58. K. Nagaoka et al., Nucl. Fusion 53, 072004 (2013)

    ADS  Google Scholar 

  59. S. Yamamoto et al., Nucl. Fusion 57, 126065 (2017)

    ADS  Google Scholar 

  60. W. Chen et al., Nucl. Fusion 58, 014001 (2018)

    ADS  Google Scholar 

  61. H. Zohm, Plasma Phys. Control. Fusion 38, 105 (1996)

    ADS  Google Scholar 

  62. A.S. Liang et al., Phys. Plasmas 25, 022501 (2018)

    ADS  Google Scholar 

  63. A.S. Liang et al., Nucl. Fusion 60, 092002 (2020)

    ADS  Google Scholar 

  64. P. Sauter et al., Nucl. Fusion 52, 012001 (2012)

    ADS  Google Scholar 

  65. C.F. Maggi et al., Nucl. Fusion 54, 023007 (2014)

    ADS  Google Scholar 

  66. W.L. Zhong et al., Nucl. Fusion 60, 082002 (2020)

    ADS  Google Scholar 

  67. W.L. Zhong et al., Phys. Rev. Lett. 117, 045001 (2016)

    ADS  Google Scholar 

  68. J. Cheng et al. Preprint: 2018 IAEA Fusion Energy Conf. (Gandhinagar, India, 22–27 October) EX/P5-6 (2018)

  69. W.W. Xiao et al., Nucl. Fusion 52, 114027 (2012)

    ADS  Google Scholar 

  70. X. L. Zou, et al. Proc. 24th Fusion Energy Conf. (San Diego, CA, 2012) (Vienna: IAEA) PD/P8–08 (2012). www.naweb.iaea.org/napc/physics/FEC/FEC2012/html/fec12.htm. Accessed 12 Oct 2012

  71. W.W. Xiao et al., Nucl. Fusion 54, 023003 (2014)

    ADS  Google Scholar 

  72. G.L. Xiao et al., Phys. Plasmas 24, 122507 (2017)

    ADS  Google Scholar 

  73. G.L. Xiao et al., Nucl. Fusion 59, 126033 (2019)

    ADS  Google Scholar 

  74. G.L. Xiao et al., Phys. Plasmas 26, 072303 (2019)

    ADS  Google Scholar 

  75. Y.P. Zhang et al., Nucl. Fusion 58, 046018 (2018)

    ADS  Google Scholar 

  76. W.L. Zhong et al., Nucl. Fusion 59, 076033 (2019)

    ADS  Google Scholar 

  77. T.F. Sun et al., Fusion Eng. Des. 148, 111301 (2019)

    Google Scholar 

  78. T.F. Sun et al., Nucl. Fusion (2021). https://doi.org/10.1088/1741-4326/abd2c7

    Article  Google Scholar 

  79. Y.Q. Liu et al., Plasma Phys. Control. Fusion 58, 114005 (2016)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all colleagues who have contributed to the HL-2A projects in the aspect of diagnostic developments and physics studies. This work is supported by the Nuclear Power Development Research Project under Grant No. H6600003-17.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to W. L. Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Duan, X.R., Liu, Y. et al. Progress of Experimental Studies in the HL-2A Tokamak. J Fusion Energ 39, 313–335 (2020). https://doi.org/10.1007/s10894-021-00282-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-021-00282-9

Keywords

Navigation