Skip to main content

Advertisement

Log in

A Domestic Program for Liquid Metal PFC Research in Fusion

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

While high-Z solid plasma-facing components (PFCs) are the leading candidates for reactors, it is unclear that they can survive the intense plasma material interaction (PMI). Liquid metals (LM) PFCs offer potential solutions since they are not susceptible to the same type of damage, and can be “self-healing”. Following the Fusion Energy System Study on Liquid Metal Plasma Facing Components study that recently was completed by Kessel et al. (Fusion Sci Technnol 75:886, 2019) a domestic LM PFC design program has been initiated to develop reactor-relevant LM PFC concepts. This program seeks to evaluate LM PFC concepts for a Fusion Nuclear Science Facility (FNSF) or a Compact Pilot Plant via engineering design calculations, modeling of PMI and PFC components and laboratory experiments. The latter involves experiments in dedicated test stands and confinement devices and seeks to identify and answer open questions in LM PFC design. The new national LM PFC program is first investigating lithium as the plasma facing material for a flowing divertor PFC concept. Several flow speeds will be evaluated, ranging from ~ cm/s to m/s. The surface temperature will initially be held below the strongly evaporative limit in the first design; higher temperatures with strong evaporation will be considered in future concepts. Other topics of interest include: understanding of the hydrogen and helium interaction with the liquid lithium; single effect experiments on wetting, compatibility and embrittlement; and prototypical experiments for control and characterization of flowing LM. A path to plasma and future tokamak exposure of these concepts will be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.E. Kessel et al., Fusion Sci. Technnol. 75, 886 (2019)

    Google Scholar 

  2. G.F. Matthews et al., Phys. Scr. T138, 014001 (2009)

    ADS  Google Scholar 

  3. G. Federici et al., Nucl. Fusion 41, 1967 (2001)

    ADS  Google Scholar 

  4. A. Loarte et al., Nucl. Fusion 54, 033007 (2014)

    ADS  Google Scholar 

  5. H. Zohm et al., Nucl. Fusion 53, 073019 (2013)

    ADS  Google Scholar 

  6. G. Federici et al., J. Nucl. Mater. 313–316, 11 (2003)

    ADS  Google Scholar 

  7. M.J. Baldwin, R.P. Doerner, Nucl. Fusion 48, 035001 (2008)

    ADS  Google Scholar 

  8. M.J. Baldwin et al., J. Nucl. Mater. 390–391, 886 (2009)

    ADS  Google Scholar 

  9. M. Kotschenreuther et al., Phys. Plasmas 14, 072502 (2007)

    ADS  MathSciNet  Google Scholar 

  10. T. Eich et al., Nucl. Fusion 53, 093031 (2013)

    ADS  Google Scholar 

  11. R.J. Goldston, Nucl. Fusion 52, 013009 (2012)

    ADS  Google Scholar 

  12. A.S. Kukushkin et al., J. Nucl. Mater. 438, S203 (2013)

    Google Scholar 

  13. A.S. Kukushkin et al., Nucl. Fusion 53, 123024 (2013)

    ADS  Google Scholar 

  14. R. Maingi, Nucl. Fusion 54, 114016 (2014)

    ADS  Google Scholar 

  15. T.K. Gray et al., J. Nucl. Mater. 415, S360 (2011)

    Google Scholar 

  16. B. LaBombard et al., Phys. Plasmas 18, 056104 (2011)

    ADS  Google Scholar 

  17. M.A. Makowski et al., Phys. Plasmas 19, 056122 (2012)

    ADS  Google Scholar 

  18. M. Ono et al., Nucl. Fusion 52, 023012 (2012)

    Google Scholar 

  19. F.L. Tabarés, Plasma Phys. Control. Fusion 58, 014014 (2016)

    ADS  Google Scholar 

  20. R. Majeski, AIPS Conf. Proc. 1237, 122 (2010)

    ADS  Google Scholar 

  21. I.E. Lyublinski, A.V. Vertkov, V.A. Evtikhin, Plasma Dev. Oper. 17, 265 (2009)

    Google Scholar 

  22. P.C. Stangeby, J. Nucl. Mater. 415, S278 (2011)

    ADS  Google Scholar 

  23. R. Majeski et al., Phys. Rev. Lett. 97, 075002 (2006)

    ADS  Google Scholar 

  24. M.G. Bell et al., Plasma Phys. Control. Fusion 51, 124054 (2009)

    ADS  Google Scholar 

  25. R. Maingi et al., 2015 Proceedings of the 26th SOFE conference, Austin TX, 31 May–4 June, 2015. ISBN:978-1-4799-8264-6, p. 899

  26. J.C. Schmitt et al., Phys. Plasmas 22, 056112 (2015)

    ADS  Google Scholar 

  27. D.P. Boyle et al., Phys Rev Lett 119, 015001 (2017)

    ADS  Google Scholar 

  28. R. Maingi et al., Nucl. Fusion 52, 083001 (2012)

    ADS  Google Scholar 

  29. J.S. Hu et al., Phys. Rev. Lett. 114, 055001 (2015)

    ADS  Google Scholar 

  30. T.H. Osborne et al., Nucl. Fusion 55, 063018 (2015)

    ADS  Google Scholar 

  31. G.Z. Zuo et al., Nucl. Fusion 57, 046017 (2017)

    ADS  Google Scholar 

  32. R. Maingi et al., Nucl. Fusion 58, 024003 (2018)

    ADS  Google Scholar 

  33. G.Z. Zuo et al., Nucl. Fusion 59, 016009 (2019)

    ADS  Google Scholar 

  34. J.S. Hu et al., Nucl. Mater. Energy 18, 99 (2019)

    Google Scholar 

  35. S. Smolentsev et al., 2019 Fusion Science Techn.at press

  36. S. Smolentsev, M. Abdou, Appl. Math. Model. 29, 215 (2005)

    Google Scholar 

  37. S. Smolentsev et al., Fusion Eng. Des. 100, 65 (2015)

    Google Scholar 

  38. J. Drobny, D. Curreli, Comp. Mater. Sci. 149, 301 (2018)

    Google Scholar 

  39. R. Khaziev, D. Curreli, Phys. Plasmas 22, 043503 (2015)

    ADS  Google Scholar 

  40. R. Khaziev, D. Curreli, Comp Phys Comm 229, 87 (2018)

    ADS  Google Scholar 

  41. D. Bernholdt et al., 2019 Final Report for the FY2018 Fusion Theory and Simulation Milestone on Plasma Materials Interaction, Department of Energy Theory Milestone Report

  42. S. Keniley, D. Curreli, Fusion Sci. Techn. 71, 93 (2017)

    Google Scholar 

  43. P. Fiflis et al., Fusion Eng. Des. 89, 2827 (2014)

    Google Scholar 

  44. O.K. Chopra et al., Fusion Technol. 8, 1956 (1985)

    Google Scholar 

  45. T. Flament et al., J. Nucl. Mater. 191–194, 132 (1992)

    ADS  Google Scholar 

  46. B. Joseph et al., Eur. Phys. J. Appl. Phys. 5, 19 (1999)

    ADS  Google Scholar 

  47. M.G. Hvasta et al., Nucl. Fusion 58, 016022 (2018)

    ADS  Google Scholar 

  48. M. Modestov et al., Nucl. Fusion 58, 016009 (2018)

    ADS  Google Scholar 

  49. K. Kusumi et al., Fusion Eng. Des. 136, 223 (2018)

    Google Scholar 

  50. M.G. Hvasta et al., Rev. Sci. Instrum. 88, 013501 (2017)

    ADS  Google Scholar 

  51. A.Y. Ying et al., Fusion Eng. Des. 72, 35 (2004)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the U.S. Department of Energy under contracts DE-SC0020642, DE-AC02-09CH11466, DE-AC05-00OR22725, and UCLA appreciate support from the sub-contract with ORNL 4000171188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Andruczyk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andruczyk, D., Maingi, R., Kessel, C. et al. A Domestic Program for Liquid Metal PFC Research in Fusion. J Fusion Energ 39, 441–447 (2020). https://doi.org/10.1007/s10894-020-00259-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-020-00259-0

Keywords

Navigation