Skip to main content
Log in

Design and Testing of Advanced Liquid Metal Targets for DEMO Divertor: The OLMAT Project

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

In a future fusion reactor like DEMOnstration reactor (DEMO) one of the main concerns is the handling of the power exhaust from the plasma, especially at the divertor. The expected power loads cannot easily be handled by traditional armor solutions based on solid materials like tungsten, especially when the effect of intense neutron bombardment is also considered. Interest in armor concepts based on liquid metals has been subsequently on the rise, as they prove to be more resilient against high, fast power loads and neutron bombardment. However, engineering solutions for those concepts are very complex, and need to be tested. For this purpose, Optimization of Liquid Metal Advanced Targets project (OLMAT) has been envisaged. The project will use the Neutral Beam Injection of the TJ-II stellarator to irradiate liquid metal targets with power densities (neutrals plus occasionally ions) relevant to DEMO steady state operation, in the range of 20 MW/m2. OLMAT design will allow a series of experiments that other divertor simulator devices cannot easily perform: in-situ measurements of hydrogen retention, redeposition, vapor shielding, material fatigue, dust and precipitates effects, etc. Moreover, a high-power fiber laser will be used to simulate Edge Localized Modes in a small area, or to simulate the strike point power deposition profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Wenninger, R. Albanese, R. Ambrosino, F. Arbeiter, J. Aubert, C. Bachmann, L. Barbato, T. Barrett, M. Beckers, W. Biel, L. Boccaccini, D. Carralero, D. Coster, T. Eich, A. Fasoli, G. Federici, M. Firdaouss, J. Graves, J. Horacek, M. Kovari, S. Lanthaler, V. Loschiavo, C. Lowry, H. Lux, G. Maddaluno, F. Maviglia, R. Mitteau, R. Neu, D. Pfefferle, K. Schmid, M. Siccinio, B. Sieglin, C. Silva, A. Snicker, F. Subba, J. Varje, H. Zohm, Nucl. Fusion 57, 046002 (2017)

    ADS  Google Scholar 

  2. J.W. Coenen, S. Antusch, M. Aumann, W. Biel, J. Du, J. Engels, S. Heuer, A. Houben, T. Hoeschen, B. Jasper, F. Koch, J. Linke, A. Litnovsky, Y. Mao, R. Neu, G. Pintsuk, J. Riesch, M. Rasinski, J. Reiser, M. Rieth, A. Terra, B. Unterberg, T. Th Weber, J.-H. Wegener, C. Linsmeier, Phys. Scr. 2016, 014002 (2016)

    Google Scholar 

  3. F.L. Tabarés, Plasma Phys. Control Fusion 58, 014014 (2016)

    ADS  Google Scholar 

  4. R.E. Nygren, F.L. Tabarés, Nucl. Mater. Energy 9, 6 (2016)

    Google Scholar 

  5. T.W. Morgan, A. Vertkov, K. Bystrov, I. Lyublinski, J.W. Genuit, G. Mazzitelli, Nucl. Mater. Energy 12, 210 (2017)

    Google Scholar 

  6. Z.H. Wang, X. Jia, M.J. Ni, Nucl. Fusion 58, 126011 (2018)

    ADS  Google Scholar 

  7. D.N. Ruzic, W. Xu, D. Andruczyk, M.A. Jaworski, Nucl. Fusion 51, 102002 (2011)

    ADS  Google Scholar 

  8. D.N. Ruzic, M. Szott, C. Sandoval, M. Christenson, P. Fiflis, S. Hammouti, K. Kalathiparambil, I. Shchelkanov, D. Andruczyk, R. Stubbers, C.J. Foster, B. Jurczyk, Nucl. Mater. Energy 12, 1324 (2017)

    Google Scholar 

  9. J.S. Hu, G.Z. Zuo, R. Maingi, Z. Sun, K. Tritz, W. Xu, Q.X. Yang, D. Andruczyk, M. Huang, X.C. Meng, X.Z. Gong, D.N. Ruzic, M.J. Ni, B.N. Wan, J.G. Li, Nucl. Mater. Energy 18, 99 (2019)

    Google Scholar 

  10. X. Zhang, C. Pan, IEEE Trans. Plasma Sci. 46, 1539 (2018)

    ADS  Google Scholar 

  11. F.L. Tabarés, E. Oyarzabal, A.B. Martin-Rojo, D. Tafalla, A. de Castro, A. Soleto, Nucl. Fusion 57, 016029 (2017)

    ADS  Google Scholar 

  12. I.E. Lyublinski, A.V. Vertkov, V.A. Evtikhin, Plasma Devices Oper. 17, 265 (2009)

    Google Scholar 

  13. A. Vertkov, I. Lyublinski, M. Zharkov, G. Mazzitelli, M.L. Apicella, M. Iafrati, Fusion Eng. Des. 117, 130 (2017)

    Google Scholar 

  14. T.W. Morgan, P. Rindt, G.G. van Eden, V. Kvon, M.A. Jaworksi, N.J.L. Cardozo, Plasma Phys. Control Fusion 60, 014025 (2018)

    ADS  Google Scholar 

  15. T.W. Morgan, D.C.M. van den Bekerom, G. De Temmerman, J. Nucl. Mater. 463, 1256 (2015)

    ADS  Google Scholar 

  16. A.B. Martin-Rojo, E. Oyarzabal, T.W. Morgan, F.L. Tabarés, Fusion Eng. Des. 117, 222 (2017)

    Google Scholar 

  17. M.A. Jaworski, T. Abrams, J.P. Allain, M.G. Bell, R.E. Bell, A. Diallo, T.K. Gray, S.P. Gerhardt, R. Kaita, H.W. Kugel, B.P. LeBlanc, R. Maingi, A.G. McLean, J. Menard, R. Nygren, M. Ono, M. Podesta, A.L. Roquemore, S.A. Sabbagh, F. Scotti, C.H. Skinner, V.A. Soukhanovskii, D.P. Stotler, N. Team, Nucl. Fusion 53, 083032 (2013)

    ADS  Google Scholar 

  18. E. Oyarzabal, A.B. Martín-Rojo, F.L. Tabarés, Fusion Eng. Des. 117, 217 (2017)

    Google Scholar 

  19. V.A. Evtikhin, I.E. Lyublinski, A.V. Vertkov, V.G. Belan, I.K. Konkashbaev, L.B. Nikandrov, J. Nucl. Mater. 271–272, 396 (1999)

    ADS  Google Scholar 

  20. P. Rindt, T.W. Morgan, M.A. Jaworski, N.J.L. Cardozo, Nucl. Fusion 58, 104002 (2018)

    ADS  Google Scholar 

  21. A.J. Donné, J. Fusion Energ. 38, 503 (2019)

    Google Scholar 

  22. EUROfusion NEWSbrief Issue 27 (2020).

  23. J. Guasp, M. Liniers, C. Fuentes, G. Barrera, Fusion Technol. 35, 32 (1999)

    Google Scholar 

  24. M. Liniers, J. Damba, J. Guasp, J.A. Sebastián, F. Martín, B. Rojo, R. Carrasco, E. Sánchez, F. Miguel, G. Wolfers, A. Soleto, E. Ascasíbar, Fusion Eng. Des. 123, 259 (2017)

    Google Scholar 

  25. S.K. Erents, G.M. McCracken, P. Goldsmith, J. Phys. D Appl. Phys. 4, 672 (1971)

    ADS  Google Scholar 

  26. C. Linsmeier, B. Unterberg, J.W. Coenen, R.P. Doerner, H. Greuner, A. Kreter, J. Linke, H. Maier, Nucl. Fusion 57, 092012 (2017)

    ADS  Google Scholar 

  27. A.V. Vertkov, I.E. Lyublinski, F. Tabares, E. Ascasibar, Fusion Eng. Des. 87, 1755 (2012)

    Google Scholar 

  28. X. Xu, N. Li, Z. Li, B. Chen, T.Y. Xia, T. Tang, B. Zhu, V. Chan, Nucl. Fusion 59, 126039 (2019)

    ADS  Google Scholar 

  29. S.J. Gee, R. Baldwin, A. Borthwick, D. Ciric, G. Crawford, L. Hackett, D. Homfray, D. Martin, J. Milnes, T. Mutters, M. Simmonds, R. Smith, R. Stephen, P. Stevenson, E. Surrey, C. Waldon, S. Warder, A. Whitehead, D. Young, Fusion Eng. Des. 74, 403 (2005)

    Google Scholar 

  30. M. Liniers, J.A. Quintana, B. Rojo, F. Martín-Díaz, F. Miguel, J.A. Sebastián, R. Carrasco, A. Soleto, E. Sánchez-Sarabia, A. Jiménez-Denche, C. Pastor, C. Rodríguez, J. Guasp, E. de la Cal, K.J. McCarthy, I. Pastor, E. Ascasíbar, J. Inst. 14, C09028 (2019)

    Google Scholar 

  31. V. Hauer and Chr. Day, DEMO Exhaust Pumping Simulations for Different Divertor/Duct Configurations Enabling Plasma Operation (Eurofusion, 2019).

  32. S. Varoutis, F. Bonelli, C. Day, Y. Igitkhanov, Nucl. Mater. Energy 12, 668 (2017)

    Google Scholar 

  33. W. Ou, R.S. Al, J.W.M. Vernimmen, S. Brons, P. Rindt, T.W. Morgan, Nucl. Fusion 60, 026008 (2020)

    ADS  Google Scholar 

  34. E. Oyarzabal, A.B. Martin-Rojo, F.L. Tabarés, J. Nucl. Mater. 463, 1173 (2015)

    ADS  Google Scholar 

  35. J.P. Allain, J.N. Brooks, Nucl. Fusion 51, 023002 (2011)

    ADS  Google Scholar 

  36. F.L. Tabarés, D. Alegre, M. Baldwin, D. Nishijima, M. Simmonds, R. Doerner, E. Alves, R. Mateus, Plasma Phys. Control Fusion 59, 044006 (2017)

    ADS  Google Scholar 

  37. C.J. Wen, R.A. Huggins, J. Electrochem. Soc. 128, 1181 (1981)

    ADS  Google Scholar 

  38. F.L. Tabarés, E. Oyarzabal, A.B. Martin-Rojo, D. Tafalla, A. de Castro, F. Medina, M.A. Ochando, B. Zurro, K. McCarthy, Nucl. Mater. Energy 12, 1368 (2017)

    Google Scholar 

  39. M. Suchoňová, J. Krištof, M. Pribula, M. Veis, F.L. Tabarés, P. Veis, Fusion Eng. Des. 117, 175 (2017)

    Google Scholar 

  40. E. Marenkov, A. Pshenov, Nucl. Fusion 60, 026011 (2020)

    ADS  Google Scholar 

  41. G.G. van Eden, T.W. Morgan, D.U.B. Aussems, M.A. van den Berg, K. Bystrov, M.C.M. van de Sanden, Phys. Rev. Lett. 116, 135002 (2016)

    ADS  Google Scholar 

  42. J.P. Allain, M.D. Coventry, D.N. Ruzic, Phys. Rev. B 76, 205434 (2007)

    ADS  Google Scholar 

  43. C. Bachmann, G. Aiello, R. Albanese, R. Ambrosino, F. Arbeiter, J. Aubert, L. Boccaccini, D. Carloni, G. Federici, U. Fischer, M. Kovari, A. Li Puma, A. Loving, I. Maione, M. Mattei, G. Mazzone, B. Meszaros, I. Palermo, P. Pereslavtsev, V. Riccardo, P. Sardain, N. Taylor, S. Villari, Z. Vizvary, A. Vaccaro, E. Visca, R. Wenninger, Fusion Eng. Des. 98–99, 1423 (2015)

    Google Scholar 

Download references

Acknowledgements

D. Alegre acknowledges the financial support from the fellowships “Ayuda para la Atracción del Talento Investigador de la Comunidad de Madrid”, ref. 2017-T2/AMB-5304 and Eurofusion Researcher Grant, TA ref AWP18-ERG-CIEMAT-Alegre. This work has been supported by the Spanish Ministry of Science and Innovation (MINECO) with Project Number RTI2018-096967-B-I00 and carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training program 2014–2018 and 2019–2020 under agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Alegre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alegre, D., Oyarzabal, E., Tafalla, D. et al. Design and Testing of Advanced Liquid Metal Targets for DEMO Divertor: The OLMAT Project. J Fusion Energ 39, 411–420 (2020). https://doi.org/10.1007/s10894-020-00254-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-020-00254-5

Keywords

Navigation