Skip to main content
Log in

Predictive Simulations of Plasma Heating and Current Drive by Neutral Beam Injection on EAST

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Long pulse and high performance steady-state operation is the main scientific mission of experimental advanced superconducting tokamak (EAST). In order to achieve this objective, high-power auxiliary heating systems are essential. Radio frequency (RF) wave heating and neutral beam injection (NBI) are two principal methods. NBI is an effective method of plasma heating and current drive, and it has been used in many magnetic confinement fusion devices. Based on the plasma equilibrium of EAST (Li et al., Plasma Phys Control Fusion 55:125008, 2013) plus previous EAST experimental data used as initial conditions, the NBI module (Polevoi et al., JAERI-Data, 1997) employed in automated system for transport analysis (ASTRA) code (Pereverzev et al., IPP-Report, 2002) is applied to predict the effects of plasma heating and current drive with different neutral beam injection power levels. At certain levels of plasma densities and plasma current densities, the simulation results show that the NBI heats plasma effectively, also increases the proportions of NB current and bootstrap current among total current significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.Q. Li, Q.L. Ren et al., Kinetic equilibrium reconstruction on EAST tokamak. Plasma Phys. Control. Fusion 55, 125008 (2013)

    Article  ADS  Google Scholar 

  2. A. Polevoi, H. Shirai, T. Takizuka, JAERI-Data/Code 97-014 (1997)

  3. G. Pereverzev et al., IPP-Report IPP 5/98 (2002)

  4. E. Speth, Neutral beam heating of fusion plasma. Rep. Prog. Phys. 52, 57 (1989)

    Article  ADS  Google Scholar 

  5. J.G. Cordey, A review of non-inductive current drive theory. Plasma Phys. Control. Fusion 26, 123 (1984)

    Article  ADS  Google Scholar 

  6. D.F.H. Start et al., Observation of beam-induced currents in a toroidal plasma. Phys. Rev. Lett. 40, 1497 (1978)

    Article  ADS  Google Scholar 

  7. J.G. Cordey et al., A theory of currents induced by radio-frequency waves in toroidal plasmas. Plasma Phys. 24, 73 (1982)

    Article  ADS  Google Scholar 

  8. C.D. Hu, NBI team, preliminary results of ion beam extraction tests on EAST neutral beam injector. Plasma Sci. Technol 14, 871 (2012)

    Article  ADS  Google Scholar 

  9. C.D. Hu, NBI team, Conceptual design of neutral beam injection system for EAST. Plasma Sci. Technol 14, 567 (2012)

    Article  ADS  Google Scholar 

  10. F. Wagner et al., Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the ASDEX tokamak. Phys. Rev. Lett. 49, 1408 (1982)

    Article  ADS  Google Scholar 

  11. Yong-Su Na et al., Simulations of KSTAR high performance steady state operation scenarios. Nucl. Fusion 49, 115018 (2009)

    Article  ADS  Google Scholar 

  12. H. Nordman, J. Weiland et al., Simulation of toroidal drift mode turbulence driven by temperature gradients and electron trapping. Nucl. Fusion 30, 983 (1990)

    Article  Google Scholar 

  13. M. Kotschenreuther, W. Dorland, M.A. Beer, G.W. Hammet, Quantitative predictions of tokamak energy confinement from first-principles simulations with kinetic effects. Phys. Plasmas 2, 2381 (1995)

    Article  ADS  Google Scholar 

  14. R.E. Waltz, G.M. Staebler, W. Dorland, G.W. Hammet, M. Kotschenreuther, J.A. Konings, A gyro-Landau-fluid transport model. Phys. Plasmas 4, 2482 (1997)

    Article  ADS  Google Scholar 

  15. M. Ju, J. Kim, K.S.T.A.R. Team, A predictive study of non-inductive current driven KSTAR tokamak discharge modes using a new transport/heating simulation package. Nucl. Fusion 40, 1859 (2000)

    Article  ADS  Google Scholar 

  16. F.L. Hinton, R.D. Hazeltine, Rev. Mod. Phys. 48, 239 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  17. Z. Lin, W.M. Tang, W.W. Lee, Neoclassical transport in enhanced confinement toroidal plasmas. Phys. Rev. Lett. 78, 456 (1997)

    Article  ADS  Google Scholar 

  18. A. A. Galeev, R. Z. Sagdeev, Voprosy Teorii Plasmy (Problems of Plasma Theory). No. 7, 210 (1973)

  19. ITER Physics Expert Groups on Confinement and Transport and Confinement Modelling and Database et al., Plasma confinement and transport. Nucl. Fusion 39, 2186 (1999)

    Google Scholar 

  20. J. Wesson, Tokamaks, fourth edn. (Oxford science publications, Oxford, 2011). 246

    MATH  Google Scholar 

  21. K. Okano, Neoclassical formula for neutral beam current drive. Nucl. Fusion 30, 423 (1990)

    Article  Google Scholar 

  22. D.R. Mikkelsen, C.E. Singer, Nucl. Technol. Fusion 4, 237 (1983)

    Google Scholar 

Download references

Acknowledgments

The authors appreciate these people who create and contribute to ASTRA code and subroutine packages. Also deep gratitude to some colleagues for fruitful discussions. This work was supported by the National Natural Science Foundation of China (NNSFC) under Contract No. 11175211, 11247302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Wu, B., Wu, X. et al. Predictive Simulations of Plasma Heating and Current Drive by Neutral Beam Injection on EAST. J Fusion Energ 33, 549–554 (2014). https://doi.org/10.1007/s10894-014-9701-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-014-9701-x

Keywords

Navigation