Skip to main content
Log in

Spherical and Cylindrical Ion Acoustic Shock Structures in Plasmas with q-Nonextensive Electron Velocity Distribution

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The propagation of ion acoustic shock waves in cylindrical and spherical geometries has been investigated. The plasma system consists of cold ions, nonextensive electrons and thermal positrons. Spherical and cylindrical Korteweg–de Vries–Burger equations have been derived by reductive perturbation method and their shock behavior is studied by employing finite difference method. It is found that shock waves can be produced in this medium. The important effects of the q-nonextensive electron on the properties of ion acoustic waves are discussed. Furthermore, it is observed that the positron concentration, ratio of electron to positron temperature, geometry parameter and the plasma kinematic viscosity significantly modifies the shock structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. Ding, C. Yinhua et al., Plasma physics (Higher education press, Beijing, 2006)

    Google Scholar 

  2. X. Jialuan, J. Shangxian, Plasma Physics (Nuclear Energy Press, Beijing, 1981)

    Google Scholar 

  3. L. Tonks, I. Langmuir, Phy. Rev. 33, 195 (1929)

    Article  ADS  MATH  Google Scholar 

  4. R.W. Revans, Phy. Rev. 44, 798 (1933)

    Article  ADS  Google Scholar 

  5. B.D. Fried, R.W. Gould, The Phys. Fluids 4, 139 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Y. Wong, N. D’ Angelo, R. W. Motley, Phy. Rev. Lett. 9 415 (1962)

    Google Scholar 

  7. I. Alexeff, R.V. Neidigh, Phy. Rev. 129, 516 (1963)

    Article  ADS  Google Scholar 

  8. E.T. Sarris, S.M. Krimigis, A.T.Y. Lui, K.L. Ackerson, L.A. Frank, D.J. Williams, Geophys. Res. Lett. 8, 349 (1981)

    Article  ADS  Google Scholar 

  9. I. Kourakis, F. Verheest, N. Cramer, Phys. Plasmas 14, 022306 (2007)

    Article  ADS  Google Scholar 

  10. S.P. Christon, Geophys. Res. Lett. 15, 303 (1988)

    Article  ADS  Google Scholar 

  11. J.T. Gosling, J.R. Asbridge, S.J. Bame, W.C. Feldman, R.D. Zwickl, G. Paschmann, N. Sckopke, R.J. Hynds, J. Geophys. Res. [Space Phys]. 86, 547 (1981)

    Article  ADS  Google Scholar 

  12. J.M. Liu, J.S. De Groot, J.P. Matte, T.W. Johnston, R.P. Drake, Phys. Rev. Lett. 72, 2717 (1994)

    Article  ADS  Google Scholar 

  13. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. J.L. Du, Europhys. Lett 67, 893 (2004)

    Article  Google Scholar 

  15. J.L. Du, Phy. Lett. A 329, 262 (2004)

    Article  ADS  MATH  Google Scholar 

  16. J.A.S. Lima, R. Silva, J. Santos, Phys. Rev. E 61, 3260 (2000)

    Article  ADS  Google Scholar 

  17. R. Silva, J.S. Alcaniz, J.A.S. Lima, Phys. A 356, 509 (2005)

    Article  Google Scholar 

  18. F.B. Rizatto, J. Plasma Phys 40, 288 (1988)

    ADS  Google Scholar 

  19. M.Y. Yu, Astrophys. Space Sci. 177, 203 (1985)

    Google Scholar 

  20. H.R. Mille, P. Witta, Active galactic nuclei (Springer, Berlin, 1987), p. 202

    Google Scholar 

  21. F.C. Michel, Rev. Mod. Phys 54, 1 (1982)

    Article  ADS  Google Scholar 

  22. F.C. Michel, Theory of neutron star magnetosphere (Chicago University Press, Chicago, 1991)

    Google Scholar 

  23. V. Berezhiani, D.D. Tskhakaya, P.K. Shukla, Phys. Rev. A 46, 6608 (1992)

    Article  ADS  Google Scholar 

  24. W. Misner, K. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, CA, 1973), p. 763

    Google Scholar 

  25. M. L. Burns, in Positron-Electron Pairs in Astrophysics, ed. by M. L.Burns, A. K. Harding, R. Ramaty (American Institute of Physics, Melville, NY, 1983)

  26. Y.N. Nejoh, Phys. Plasmas 3, 1447 (1996)

    Article  ADS  Google Scholar 

  27. F. Verheest, M.A. Hellberg, G.J. Gray, R.L. Mace, Astrophys. Space Sci 239, 125 (1995)

    Article  ADS  Google Scholar 

  28. A. Mushtaq, H.A. Shah, Phys. Plasmas 12, 072306 (2005)

    Article  ADS  Google Scholar 

  29. H.R. Pakzad, Astrophys. Space Sci. 331, 169 (2011)

    Article  ADS  MATH  Google Scholar 

  30. S. Ali, W.M. Moslem, P.K. Shukla, R. Schlickeiser, Phys. Plasmas 14, 082307 (2007)

    Article  ADS  Google Scholar 

  31. H. R. Pakzad, Astrophys. Space Sci, Published online 17 November (2010). doi:10.1007/s10509-010-0533-5

  32. B. Sahu, R. Roychoudhury, Phys. Plasmas 14, 072310 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  33. J.-K. Xue, Phys. Plasmas 10, 4893 (2003)

    Article  ADS  Google Scholar 

  34. R. Silva Jr, A.R. Plastino, J.A.S. Lima, Phys. Lett. A 249, 401 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. T. Taniuti, C.C. Wei, J. Phys. Soc. Jpn 24, 941 (1968)

    Article  ADS  Google Scholar 

  36. T. Taniuti, N. Yajima, J. Math. Phys 10, 1369 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  37. R. Roychoudhury, G.C. Das, J. Sarma, Phys. Plasmas 6, 2721 (1999)

    Article  ADS  Google Scholar 

  38. B. Sahu, R. Roychoudhury, Czech. J. Phys 53, 517 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  39. H. W. Press, A. S. Teukolsky, T. W. Vetterling, P. B. Flannery, Numerical Recipes in Fortran, 2nd ed. (Cambridge University Press, Cambridge, 1992)

  40. S. Maxon, J. Viecelli, Phys. Rev. Lett. 32, 4 (1974)

    Article  ADS  Google Scholar 

  41. S. Maxon, J. Viecelli, Phys. Fluids 17, 1614 (1974)

    Article  ADS  Google Scholar 

  42. M.Q. Tran, Phys. Scr 20, 317 (1979)

    Article  ADS  Google Scholar 

  43. [42] J. L. Du, Astrophys. Space Sci. 312, 47 (2007), and the references therein

  44. C. Tsallis, F.C.S. Barreto, E.D. Loh, Phys. Rev. E 52, 1447 (1995)

    Article  ADS  Google Scholar 

  45. F. Ferro, A. Lavagno, P. Quarati, Eur. Phys. J. A 21, 529 (2004)

    Article  ADS  Google Scholar 

  46. S. Shaikh, A. Khan, P.K. Bhatia, Astrophys. Space Sci 312, 35 (2007)

    Article  ADS  MATH  Google Scholar 

  47. V. Munoz, Nonlinear Proc Geophys 13, 237 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  48. F. Valentini, Phys. Plasmas 12, 072106 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  49. J.L. Du, Phys. Lett. A 320, 347 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  50. S. Shaikh, A. Khan, P.K. Bhatia, Phys. Lett. A 372, 1451 (2008)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Pakzad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eslami, P., Pakzad, H.R. & Mottaghizadeh, M. Spherical and Cylindrical Ion Acoustic Shock Structures in Plasmas with q-Nonextensive Electron Velocity Distribution. J Fusion Energ 31, 617–625 (2012). https://doi.org/10.1007/s10894-012-9515-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-012-9515-7

Keywords

Navigation