Skip to main content
Log in

Measurement of the Energy of Nitrogen Ions Produced in Filippov Type Plasma Focus Used for the Nitriding of Titanium

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

In this paper the nitrogen ion properties (maximum energy, current density and the most probable energy) are investigated by using Faraday cup in a time of flight method. These ions are produced in a Filippov type plasma focus (Sahand Facility) device and the Faraday cup was placed in a distance range of 18–24 cm from the top of the anode. Maximum and minimum most probable ion energies are 76 and 8.5 keV for the distance range of 18 and 24 cm, respectively. The displacement from 18 to 24 cm at top of the anode the ion current density varies from 4.5 × 106 to 3.2 × 105 (A m−2). For the investigation of the effect of ions bombardment of materials at different positions, at the optimum working conditions of 14 kV as a working voltage, and 0.25 Torr as a gas pressure, titanium samples are placed in a distance of 21, 22, 23 and 24 cm from the top of the anode (θ = 0) and each sample is put under irradiation for 30 plasma shots. The structure of the nitrided surfaces and their morphologies are characterized by X-ray diffractometry and by scanning electron microscopy, respectively. The average crystallite size deduced for (200) and (222) planes of TiN deposited with 30 shots in different distances are estimate to be from ~13 to ~38 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.W. Mather, Phys. Fluids 7, 5 (1964)

    Article  Google Scholar 

  2. N.V. Filippov, T.I. Filippova, V.P. Vinogradov, Nucl. Fusion Suppl. 2, 577 (1962)

    Google Scholar 

  3. M. Zakaullah, I. Ahmad, A. Omar, G. Murtaza, M.M. Beg, Plasma Sources Sci. Technol. 5, 544 (1996)

    Article  ADS  Google Scholar 

  4. S.R. Mohanty, M.P. Srivastava, R.S. Rawat, Phys. Lett. A 234, 472 (1997)

    Article  ADS  Google Scholar 

  5. H. Kelly, A. Lepone, A. Marquez, IEEE Trans. Plasma Sci. 25, 455 (1997)

    Article  ADS  Google Scholar 

  6. C.S. Wong, P. Choi, W.S. Leong, J. Singh, Jpn. J. Appl. Phys. 41, 3943 (2002)

    Article  ADS  Google Scholar 

  7. H. Kelly et al., IEEE Trans. Plasma Sci. 26, 113 (1998)

    Article  ADS  Google Scholar 

  8. M. Sadowski, E.S. Sadowski, J. Baranowski, J. Zebrowski, H. Kelly, A. Lepone, A. Marquez, M. Milanese, R. Moroso, J. Pouzor, Nukleonika 45, 179 (2000)

    Google Scholar 

  9. W. Stygar, G. Gerdin, F. Venneri, J. Mandrekas, Nucl. Fusion 22, 116 (1982)

    Article  Google Scholar 

  10. J.N. Feugeas, E. Llonch, C.O. de Gonzalez, G. Galambos, J. Appl. Phys. 64, 2648 (1988)

    Article  ADS  Google Scholar 

  11. R.S. Rawat, M.P. Srivastava, S. Tandon, A. Mansingth, Phys. Rev. B 47, 4858 (1993)

    Article  ADS  Google Scholar 

  12. K.A. Muller, M. BurKard, Phys. Rev. B 19, 3593 (1979)

    Article  ADS  Google Scholar 

  13. C.R. Kant, M.P. Srivastava, R.S. Rawat, Phys. Lett. A 226, 212 (1997)

    Article  ADS  Google Scholar 

  14. R.S. Rawat, P. Lee, T. White, L. Ying, S. Lee, Surf. Coat. Technol. 138, 159 (2001)

    Article  Google Scholar 

  15. R. Gupta, M.P. Srivastava, Plasma Source Sci. Technol. 13, 371 (2004)

    Article  ADS  Google Scholar 

  16. R.S. Rawat, P. Lee, T. White, S. Lee, in 27th EPS Conference on Controlled Fusion and Plasma Physics, Budapest, 12–16 June 2000 ECA, vol. 24 B (2000), p. 484

  17. M. Sumini, D. Mostacci, F. Rocchi, M. Frignani, A. Tartari, E. Angeli, D. Galaverni, U. Coli, B. Ascione, G. Cucchi, Nucl. Instrum. Methods Phys. Res. A 562, 1068 (2006)

    Article  ADS  Google Scholar 

  18. R. Buhl, H.K. Pulker, E. Moll, Thin Solid Films 80, 265 (1981)

    Article  ADS  Google Scholar 

  19. M. Wittmer, B. Studer, H. Melchiar, J. Appl. Phys. 52, 5722 (1981)

    Article  ADS  Google Scholar 

  20. B. Zega, M. Kornmann, J. Amiguet, Thin Solid Films 54, 577 (1977)

    Article  Google Scholar 

  21. A. Mumtaz, W.H. Class, J. Vac. Sci. Technol. 20(3), 345 (1982)

    Article  ADS  Google Scholar 

  22. E. Valkonen, T. Karlsson, B. Karlsson, B.O. Hojansson, Proc. SPIE Int. Tech. Conf. 401, 41 (1983)

    Google Scholar 

  23. M. Ohring, The Materials Science of Thin Films (Academic, New York, 1992)

    Google Scholar 

  24. H. Yumoto, K. Watanabe, K. Akashi, N. Igata, Appl. Surf. Sci. 48, 173 (1991)

    Article  ADS  Google Scholar 

  25. M.A. Mohammadi, S. Sobhanian, R.S. Rawat, Phys. Lett. A 375, 3002 (2011)

    Article  ADS  Google Scholar 

  26. S.K. Karkari, S. Mukherjee, P.I. John, Rev. Sci. Instrum. 71, 93 (2000)

    Article  ADS  Google Scholar 

  27. J.S. Pearlman, Rev. Sci. Instrum. 48, 20 (1977)

    Article  Google Scholar 

  28. S.R. Mohanty, H. Bhuyan, N.K. Neog, R.K. Rout, E. Hotta, Jpn. J. Appl. Phys. 44, 5199 (2005)

    Article  ADS  Google Scholar 

  29. G. Modreanu, N.B. Mandache, A.M. Pointu, M. Ganciu, I.I. Popescu, J. Phys. D Appl. Phys. 33, 819 (2000)

    Article  ADS  Google Scholar 

  30. K.L. Brown, G.W. Tautfest, Rev. Sci. Instrum. 27, 696 (1956)

    Article  ADS  Google Scholar 

  31. N. Sclater, Wire & Cable for Electronics (McGraw-Hill, 1991), p. 128

  32. W.H. Bostick, H. Kilic, V. Nardi, C.W. Powell, Nucl. Fusion 33, 413–420 (1993)

    Article  ADS  Google Scholar 

  33. G. Gerdin, W. Stygar, F. Venneri, J. Appl. Phys. 52, 3269 (1981)

    Article  ADS  Google Scholar 

  34. H. H. Andersen, J. F. Ziegler, Hydrogen Stopping Power and Ranges in All Elements. Stopping and Ranges of Ions in Matter, vol. 3 (Pergamon, New York, 1977)

  35. B. Rossi, K. Greisen, Rev. Mod. Phys. 13, 240 (1941)

    Article  ADS  Google Scholar 

  36. B. D. Cullity, Elements of X-ray Diffraction (Addision-Wesley, Palo Alto, 1978), p. 102

  37. V.N. Gurarie, P.H. Otsuka, D.N. Jamieson, S. Prawer, Nucl. Instrum. Methods Phys. Res. B 242, 421 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ghareshabani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghareshabani, E., Mohammadi, M.A. Measurement of the Energy of Nitrogen Ions Produced in Filippov Type Plasma Focus Used for the Nitriding of Titanium. J Fusion Energ 31, 595–602 (2012). https://doi.org/10.1007/s10894-012-9505-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-012-9505-9

Keywords

Navigation