Skip to main content
Log in

Estimation of ion accelerating potential inside the nanosecond pulsed laser produced tungsten plasma

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Plasma plume generated by neodymium-doped yttrium aluminium granite laser (wavelength = 1064 nm, pulse duration = 6 ns) focused onto a planar tungsten target is investigated with the help of ion collector (IC) and electrostatic ion energy analyzer (IEA) operating in time-of-flight configuration. Laser fluence was in the range of 7–20 J/cm2. The IEA spectra showed that the charge state of tungsten ions emitted from the plume increases with the laser fluence and W6+ was the highest ion charge state detected in the investigated range of the laser fluence. Coulomb–Boltzmann-shifted time function was used to determine ion intensities and peak energies of the various ion charge states from the measured IC spectra. Depending on the charge state, the energies of various ion charge states were in the range of 0.6–2.7 keV. The experimental data were exploited to estimate the equivalent accelerating potential developed inside the plume. The equivalent accelerating potential was found to increase linearly with the increase of laser fluence. The comparison with literature data revealed that the equivalent accelerating potential also increases with the atomic number of the target material. These results are in good agreement with the predictions of the electrostatic model for ion acceleration in laser plasma.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Braren, J. Bukoski, D. Norton, Laser ablation in material processing and applications (Material Research Society, Pittsburgh, 1993)

  2. S. Martellucci, C. Bellecci, M. Francucci, P. Gaudio, M. Richetta, D. Toscano, A. Rydzy, M. Gelfusa, P. Ciuffa, J. Phys. Condens. Matter 18, S2039 (2006)

    Article  ADS  Google Scholar 

  3. B.Y. Sharkov, R. Scrivens, IEEE Trans. Plasma Phys. 33, 1778 (2005)

    Article  ADS  Google Scholar 

  4. B. Doggett, J.G. Lunny, J. Appl. Phys. 105, 033306 (2009)

    Article  ADS  Google Scholar 

  5. J.G. Lunny, B. Doggett, Y. Kaufman, J. Phys.: Conf. Ser. 59, 470 (2007)

    Google Scholar 

  6. B. Verhoff, S.S. Harilal, A. Hussanein, J. Appl. Phys. 111, 123304 (2012)

    Article  ADS  Google Scholar 

  7. A.H. Dogar, B. Ilyas, H. Qayyum, S. Ullah, A. Qayyum, Eur. Phys. J. Appl. Phys. 54, 10301 (2011)

    Article  ADS  Google Scholar 

  8. R.A. Burdt, Y. Tao, M.S. Tillack, S. Yuspeh, N.M. Shaikh, E. Flaxer, F. Najmabadi, J. Appl. Phys. 107, 043303 (2010)

    Article  ADS  Google Scholar 

  9. B. Ilyas, A.H. Dogar, S. Ullah, A. Qayyum, J. Phys. D: Appl. Phys. 44, 295202 (2011)

    Article  Google Scholar 

  10. D. Margarone, L. Torrisi, A. Borrielli, F. Caridi, Plasma Sour. Sci. Technol. 17, 035019 (2008)

    Article  ADS  Google Scholar 

  11. S. Amoruso, V. Berardi, R. Bruzzese, N. Spinelli, X. Wang, Appl. Surf. Sci. 127, 953 (1998)

    Article  ADS  Google Scholar 

  12. D. Bleniner, A. Bogaerts, F. Belloni, V. Nassisi, J. Appl. Phys. 101, 083301 (2007)

    Article  ADS  Google Scholar 

  13. P. Yeates, C. Fallon, E. Kennedy, J.T. Costello, Phys. Plasma 18, 103104 (2011)

    Article  ADS  Google Scholar 

  14. M. Comet, M. Versteegen, F. Gobet, D. Denis-Petit, F. Hannachi, V. Meot, M. Yarisien, J. Appl. Phys. 119, 013301 (2016)

    Article  ADS  Google Scholar 

  15. L. Láska, J. Krása, K. Mašek, M. Pfeifer, P. Trenda, B. Králiková, J. Skála, K. Rohlena, E. Woryna, J. Farny, P. Parys, J. Wolowski, W. Mróz, A. Shumshurov, B. Sharkov, J. Collier, K. Langbein, H. Haseroth, Rev. Sci. Instrum. 67, 950 (1996)

    Article  ADS  Google Scholar 

  16. L. Láska, J. Krása, A. Velyhan, K. Jungwirth, E. Krousky, D. Margarone, M. Pfeifer, K. Rohlena, L. Ryć, J. Skála, L. Torrisi, J. Ullschmied, Laser Part. Beams 27, 137 (2009)

    Article  ADS  Google Scholar 

  17. L. Torrisi, F. Caridi, D. Margarone, A. Borrielli, Appl. Surf. Sci. 254, 2090 (2008)

    Article  ADS  Google Scholar 

  18. M. Kubkowska, P. Gasior, M. Rosinski, J. Wolowski, M.J. Sadowski, K. Malinowski, E. Skladnik-Sadowska, Eur. Phys. J. D 54, 463 (2009)

    Article  ADS  Google Scholar 

  19. L. Torrisi, F. Caridi, D. Margarone, A. Borrielli, Appl. Surf. Sci. 252, 6383 (2006)

    Article  ADS  Google Scholar 

  20. L. Torrisi, F. Caridi, D. Margarone, A. Borrielli, Nucl. Instrum. Methods B 266, 308 (2008)

    Article  ADS  Google Scholar 

  21. S.A. Abbasi, M.S. Hussain, B. Ilyas, M. Rafique, A.H. Dogar, A. Qayyum, Laser Part. Beams 33, 81 (2015)

    Article  ADS  Google Scholar 

  22. J. Rapp, G. Pintsuk, P. Mertens, H. Altmann, P.J. Lomas, V. Riccardo, Fus. Eng. Des. 85, 153 (2010)

    Article  Google Scholar 

  23. P. Mertens, H. Altmann, T. Hirai, V. Philipps, G. Pintsuk, J. Rapp, V. Riccardo, B. Schweer, I. Uytdenhouwen, U. Samm, J. Nucl. Mater. 390, 967 (2009)

    Article  ADS  Google Scholar 

  24. T. Hirai, H. Maier, M. Rubel, P. Mertens, R. Neu, E. Gauthier, J. Likonen, C. Lungu, G. Maddaluno, G.F. Matthews, R. Mitteau, O. Neubauer, G. Piazza, V. Philipps, B. Riccardi, C. Ruset, I. Uytdenhouwen, JET EFDA Contributors, Fus. Eng. Des. 82, 1839 (2007)

    Article  Google Scholar 

  25. B. Ilyas, A.H. Dogar, A. Qayyum, Nucl. Instrum. Methods B 312, 122 (2013)

    Article  ADS  Google Scholar 

  26. S.A. Abbasi, A.H. Dogar, S. Ullah, M. Rafique, A. Qayyum, Nucl. Instrum. Methods B 408, 244 (2017)

    Article  Google Scholar 

  27. G. Baraldi, A. Perea, C.N. Afonso, J. Appl. Phys. 109, 043302 (2011)

    Article  ADS  Google Scholar 

  28. H.Y. Zhao, J.J. Zhang, Q.Y. Jin, W. Liu, G.C. Wang, L.T. Sun, X.Z. Zhang, H.W. Zhao, Rev. Sci. Instrum. 87, 02A917 (2016)

    Article  Google Scholar 

  29. F. Caridi, L. Torrisi, L. Giuffrida, Nucl. Instrum. Methods B 268, 499 (2010)

    Article  ADS  Google Scholar 

  30. F. Caridi, L. Torrisi, L. Giuffrida, Appl. Surf. Sci. 272, 6 (2013)

    Article  ADS  Google Scholar 

  31. D. Margarone, Ph.D. thesis, University of Messina, Italy, 2007

  32. W. Demtröder, W. Jantz, Plasma Phys. 12, 691 (1970)

    Article  ADS  Google Scholar 

  33. Y. Bykovskii, N.N. Degtyarenko, V.I. Dymovich, V.F. Elesin, Y.P. Kozyrev, B.I. Nikolaev, S.V. Ryzhinkh, S.M. Sil’Nov, Sov. Phys. Tech. Phys. 14, 1269 (1970)

    ADS  Google Scholar 

  34. S.S. Harilal, C.V. Bindhu, R.C. Issac, V.P.N. Nampoori, C.P.G. Vallabhan, J. Appl. Phys. 82, 2140 (1997)

    Article  ADS  Google Scholar 

  35. G. Shukla, A. Khare, Appl. Surf. Sci. 254, 8730 (2009)

    Article  ADS  Google Scholar 

  36. S.S. Harilal, C.V. Bindhu, V.P.N. Nampoori, C.P.G. Vallabhan, Appl. Spectrosc. 52, 449 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Qayyum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogar, A.H., Abbasi, S.A., Qayyum, H. et al. Estimation of ion accelerating potential inside the nanosecond pulsed laser produced tungsten plasma. Eur. Phys. J. D 71, 250 (2017). https://doi.org/10.1140/epjd/e2017-80368-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80368-2

Keywords

Navigation