Skip to main content
Log in

Trapping of Free Electrons in Multipole System

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

In this paper, the effective Parameters in the confinement and trapping of fast electrons in plasma source Such as; plasma pressure, wall material of plasma chamber and magnetic mirror rate have been investigated with using Comsol & Geant4 code. The calculations are shown that the Multicusp magnetic field was effective the pressure less than 5 mTor, and the confinement effect becomes stronger with decreasing pressure. It is equivalent to a higher yield of output ions of plasma source. The number of fast electrons trapped in the magnetic field increases with increasing magnetic field intensity and using aluminum for wall material. Optimum conditions of confinement plasma, leading to increased the hot electron density, and ionization efficiency is increased. The results of investigations have demonstrated good correspondence with theoretical calculations, therefore there is the adequacy of the developed approach and the possibility to build more effective source ion on this basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K. Makino, T. Sakurabayasi, K. Miyamoto, M. Bacal, M. Ogasawara, Rev. Sci. Instrum. 75, 1650–1652 (2004)

    Article  ADS  Google Scholar 

  2. I.G. Brown, The physics and technology of ion sources, Chap. 1 (Wiley-VCH, 2004)

  3. B. Rubin, C. Farnell, J. Williams, J. Vaughn, T. Schneider, D. Ferguson, Plasma Sources Sci. Technol. 18, 1 (2009)

    Article  Google Scholar 

  4. Y.I. Belchenko, Y. Oka, O. Kaneko, Y. Takeiri, K. Tsumori, Rev. Sci. Instrum. 73, 1746 (2002)

    Article  ADS  Google Scholar 

  5. P. Svarnas, B.M. Annaratone, S. Béchu, J. Pelletier, M. Bacal, Plasma Sources Sci. Technol. 18, 1–7 (2009)

    Article  Google Scholar 

  6. T. Sakurabayashi, A. Hatayama, K. Miyamoto, Rev. Sci. Instrum. 73, 1048–1050 (2002)

    Article  ADS  Google Scholar 

  7. P. Machima, M.M.M. Bilek, O.R. Monteiro, I.G. Brown, Rev. Sci. Instrum. 71, 3373 (2000)

    Article  ADS  Google Scholar 

  8. S.V. Golubev, S.V. Razin, V.E. Semenov, A.N. Smirnov, A.V. Vodopyanov, V.G. Zorin, Rev. Sci. Instrum. 71, 669 (2000)

    Article  ADS  Google Scholar 

  9. Y. Inouchi, Sh. Dohi, M. Tanii, M. Konishi, M. Naito, AIP Conf. Proc. 1321, 500–503 (2011)

    Article  ADS  Google Scholar 

  10. V.I. Voznyi, V.I. Miroshnichenko, S.N. Mordyk, V.E. Storizhko, D.P. Shulha, Plasma Phys. 15, 142–144 (2009)

    Google Scholar 

  11. K.N. Leung, Rev. Sci. Instrum. 65, 1165–1169 (1994)

    Article  ADS  Google Scholar 

  12. M. Kronberger, D. Küchler, J. Lettry, Rev. Sci. Instrum. 81, 02A708-1 (2010)

    Article  Google Scholar 

  13. J. Strnat, Proc. IEEE 78, 923 (1990)

    Article  ADS  Google Scholar 

  14. O.A. Popov, High density plasma sources (Noyes Publications, New Jersey, 1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Khodadadi Azadboni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahdavi, M., Khodadadi Azadboni, F. & Khodadadi Azadboni, R. Trapping of Free Electrons in Multipole System. J Fusion Energ 31, 368–373 (2012). https://doi.org/10.1007/s10894-011-9476-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-011-9476-2

Keywords

Navigation