Skip to main content
Log in

Studies of Galatea Multipole Traps at the Russian Technoligical University MIREA

  • MAGNETIC CONFINEMENT SYSTEMS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results from studies of plasma production and confinement in Galatea multipole magnetic traps at the Russian Technological University MIREA are presented. The magnetic systems of such traps are considered. It is shown that it is possible to design a system in which plasma bunches and neutral atomic beams are injected along the major radius of the torus. Different methods of plasma production in such traps are studied. It is shown that plasma production by means of an electric discharge is inefficient. The process of loading of the trap with plasma by injecting a plasma bunch is studied in detail. The parameters of the plasma bunch at which it is efficiently captured by the trap are determined. The azimuthal diamagnetic current arising after the plasma bunch is injected into the trap is measured using a Rogowski coil. The interaction of this current with the magnetic field of the trap results in the appearance of the Ampère forces confining the plasma. The plasma temperature in the trap can be determined from the measured value of the diamagnetic current. It is shown that it is possible to design a laboratory prototype of a trap with two levitating coils. The magnetic field and ion temperature in such a trap are estimated to be 0.37 T and >300 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. I. Morozov and V. V. Savelyev, Phys. Usp. 41, 1049 (1998).

    Article  ADS  Google Scholar 

  2. Y. G. Voorhies and T. Ohkawa, Phys. Fluids 11, 1572 (1968).

    Article  ADS  Google Scholar 

  3. S. Yoshikawa, Nucl. Fusion 13, 433 (1973).

    Article  Google Scholar 

  4. J. H. Schultz, G. Driscoll, D. Garner, J. Kesner, M. Mauel, J. V. Minervini, A. Smith, A. Radovinsky, G. Snichler, and A. Zhukovsky, IEEE Trans. Appl. Supercond. 11, 2004 (2001).

    Article  ADS  Google Scholar 

  5. M. Mauel, A. Hasegawa, and L. Chen, Nucl. Fusion 30, 2405 (1990).

    Article  Google Scholar 

  6. J. Kesner, A. C. Boxer, J. L. Ellswors, D. T. Garnier, A. K. Hansen, I. Karim, M. E. Mauel, and E. E. Ortiz, in Proceedings of the 21st IAEA Fusion Energy Conference, Chengdu, 2006, Paper IC/P7-7.

  7. Z. Yoshikava, Y. Ogawa, J. Morikfwa, M. Furukawa, D. Saitoh, M. Hirota, D. Hori, J. Sharaish, S. Watanabe, and Y. Yano, in Proceedings of the 21st IAEA Fusion Energy Conference, Chengdu, 2006, Paper IC/P7-14.

  8. D. T. Garner, M. S. Davis, J. L. Ellsworth, J. Kahn, J. Kesner, M. E. Mauel, P. Michael, B. Wilson, and P. P. Woskov, in Proceedings of the 23rd IAEA Fusion Energy Conference, Daejeon, 2010, Paper ICC/1-1Ra.

  9. H. Saitoh, H. Yoshida, J. Morikawa, Y. Yano, T. Mizushima, Y. Ogawa, M. Furukawa, K. Harima, Y. Kawazura, K. Tadashi, S. Emoto, M. Kobayashi, T. Sugiura, and G. Vogel, in Proceedings of the 23rd IAEA Fusion Energy Conference, Daejeon, 2010, Paper EXC/9-14Rb.

  10. A. I. Morozov, A. I. Bugrova, A. M. Bishaev, M. V. Kozintseva, A. S. Lipatov, V. I. Vasil’ev, and V. M. Strunnikov, Plasma Phys. Rep. 32, 171 (2006).

    Article  ADS  Google Scholar 

  11. A. I. Morozov, A. I. Bugrova, A. M. Bishaev, M. V. Kozintseva, and A. S. Lipatov, Tech. Phys. Lett. 32, 33 (2006).

    Article  ADS  Google Scholar 

  12. A. I. Morozov, A. I. Bugrova, A. S. Lipatov, V. K. Kharchevnikov, and M. V. Kozintseva, Tech. Phys. Lett. 26, 686 (2000).

    Article  ADS  Google Scholar 

  13. A. I. Morozov, A. I. Bugrova, A. S. Lipatov, and V. K. Kharchevnikov, Tech. Phys. Lett. 26, 666 (2000).

    Article  ADS  Google Scholar 

  14. A. I. Morozov, A. I. Bugrova, A. M. Bishaev, and V. A. Nevrovski, Tech. Phys. Lett. 25, 700 (1999).

    Article  ADS  Google Scholar 

  15. A. I. Morozov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 3, 57 (2000).

    Google Scholar 

  16. K. P. Kirdyashev, A. I. Morozov, A. I. Bugrova, and A. M. Bishaev, Tech. Phys. Lett. 28, 275 (2002).

    Article  ADS  Google Scholar 

  17. A. I. Morozov, A. I. Bugrova, A. M. Bishaev, S. V. Baranov, V. I. Vasil’ev, and V. M. Strunnikov, in Proceedings of the 4th International Symposium on Radiative Plasma Dynamics, Moscow, 2003, p. 4.

  18. A. M. Bishaev, A. I. Bugrova, A. S. Sigov, A. I. Morozov, M. V. Kozintseva, A. S. Lipatov, V. K. Kharchevnikov, A. V. Desyatskov, G. E. Bugrov, A. A. Pushkin, and A. I. Morozov, RF Patent No. 2430493 from September 27, 2011.

  19. A. M. Bishaev, A. I. Bugrova, M. V. Kozintseva, A. S. Lipatov, A. S. Sigov, and V. K. Kharchevnikov, Tech. Phys. Lett. 36, 487 (2010).

    Article  ADS  Google Scholar 

  20. A. M. Bishaev, G. E. Bugrov, A. V. Desyatskov, M. V. Kozintseva, P. V. Ogarkov, P. G. Sazonov, M. B. Gavrikov, and V. V. Savelyev, Vest. MGTU MIREA, No. 2, 101 (2015).

    Google Scholar 

  21. V. S. Strelkov, Physics Basis of Tokamak Plasma Diagnostics (MIPhI, Moscow, 2004) [in Russian].

  22. M. V. Gavrikov and V. V. Savelyev, J. Math. Sci. 163, 1 (2009).

    Article  MathSciNet  Google Scholar 

  23. E. D. Andryukhina and I. S. Shpigel’, Sov. Phys. Tech. Phys. 10, 962 (1966).

    Google Scholar 

  24. A. M. Bishaev, M. B. Gavrikov, M. V. Kozintseva, and V. V. Savel’ev, Tech. Phys. 63, 20 (2018).

    Article  Google Scholar 

  25. K. B. Abramova, A. V. Voronin, V. K. Gusev, E. E. Mukhin, Yu. V. Petrov, N. V. Sakharov, and F. V. Chernyshov, Plasma Phys. Rep. 31, 721 (2005).

    Article  ADS  Google Scholar 

  26. A. M. Bishaev, A. A. Bush, M. B. Gavrikov, A. I. Denisyuk, K. E. Kamentsev, M. V. Kozintseva, V. V. Savel’ev, and A. S. Sigov, Tech. Phys. 59, 940 (2014).

    Article  Google Scholar 

  27. I. M. Poznyak, I. N. Arkhipov, S. V. Karelov, V. M. Safronov, and D. A. Toporkov, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez 37, 70 (2014).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by the Ministry of Education and Science of the Russian Federation (project no. 3.5160.2017/BCh) and the Russian Science Foundation (project no. 16-11-10278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bishaev.

Additional information

Translated by I. Grishina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishaev, A.M., Gavrikov, M.B., Kozintseva, M.V. et al. Studies of Galatea Multipole Traps at the Russian Technoligical University MIREA. Plasma Phys. Rep. 45, 121–133 (2019). https://doi.org/10.1134/S1063780X1901001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1901001X

Navigation