Skip to main content
Log in

Effect of O2/Ar Mixture on the Structural and Optical Properties of ZnO Thin Films Fabricated by DC Cylindrical Magnetron Sputtering

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Direct Current Cylindrical Magnetron Sputtering Setup was used to deposit ZnO thin films on BK7 substrates. The effects of changing O2/Ar reactive gas mixtures on the structural and optical properties of films were studied. Crystallinity and structure of films were obtained by X-ray diffraction (XRD). Preferential crystalline growth orientation of ZnO films detected by XRD was always along the (002) orientation. The thickness of films was measured by surface profilometer which showed thickness increasing from 68.7 to 80.8 nm for 3–6% O2 amount respectively. The morphology and roughness of the films were investigated by Atomic Force Microscopy (AFM). As oxygen gas amount was increased, the roughness and the grain size were decreased and the deposition rate was increased. The optical transmittance of ZnO films are obviously affected by the changing of O2/Ar reactive gas mixtures. All films exhibit a transmittance higher than 70% in the visible region. The optical band gap of films was measured by Tauc’s method. The results show that by increasing the amount of O2 in reactive gas mixture, the optical band gap of deposited films increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V.A. Coleman, C. Jagadish, Zinc Oxide-Bulk (Thin Films and Nanostructures, Gainesville, Elsevier Limited, 2006)

    Google Scholar 

  2. L. Hong-Jian, X.-Y. Li et al., Opt. Commun. 282, 247–252 (2009)

    Article  ADS  Google Scholar 

  3. F. Guojia, L. Dejie, L.Y. Bao, Vacuum 68, 363–372 (2003)

    Google Scholar 

  4. A.H. Fahmy, E.L. Adler, IEEE Trans. Sonics Ultrason. 19, 346 (1972)

    Article  Google Scholar 

  5. G.D. Hillman, H.J. Sequin, IEEE Trans. Sonics Ultrason. 21, 49 (1974)

    Article  Google Scholar 

  6. P.K. Tien, Appl. Opt. 10, 2395 (1971)

    Article  ADS  Google Scholar 

  7. J.M. Hammer, D.J. Channin, M.T. Duffy, J.P. Wittke, Appl. Phys. Left. 21, 358 (1971)

    Article  ADS  Google Scholar 

  8. N. Chubachi, Proc. IEEE 64, 772 (1976)

    Article  Google Scholar 

  9. B.T. Khuri-Yakub, G.S. Kino, Appl. Phys. Left. 25, 188 (1974)

    Article  ADS  Google Scholar 

  10. L.A. Coldren, Appl. Phys. Lett. 27, 6 (1975)

    Article  ADS  Google Scholar 

  11. J. Aranovich, A. Ortiz, R.H. Bube, J. Vat. Sci. Technol. 16, 994 (1979)

    Article  ADS  Google Scholar 

  12. J.J. Lu, S.Y. Tsai, Y.M. Lu, T.C. Lin, K.J. Lin, Solid State Commun 149, 2177–2180 (2009)

    Article  ADS  Google Scholar 

  13. J.P. Zhang, G. He, L.Q. Zhu, M. Liu, S.S. Pan, L.D. Zhang, Appl. Surf. Sci. 253, 9414–9421 (2007)

    Article  ADS  Google Scholar 

  14. J. Ma, F. Ji, D. Zhang, H. Ma, S. Li, Thin Solid Films 357, 98 (1999)

    Article  Google Scholar 

  15. K. Rakhi, P.S. Amit, K. Avinashi, G. Sorin, M. Paola, E.S. Nadya, P. Alessio, Opt. Laser Technol. 40, 247 (2008)

    Article  Google Scholar 

  16. D.A. Lamb, S.J.C. Irvine, J. Cryst. Growth 273, 111 (2004)

    Article  ADS  Google Scholar 

  17. Y. Natsume, H. Sakata, Thin Solid Films 372, 30 (2000)

    Article  ADS  Google Scholar 

  18. S.S. Lin, J.L. Huang, Sa˘jgalik P. Surf. Coating Technol. 190, 39 (2005)

    Article  Google Scholar 

  19. D.C. Oh, A. Setiawan, J.J. Kim, H.J. Ko, H. Makino, H. Hanada, Curr. Appl. Phys. 4, 625 (2004)

    Article  Google Scholar 

  20. D.F. Paraguay, L.W. Estrada, N.D.R. Acosta, E. Andrade, M. Miki Yoshida, Thin Solid Films 350, 192–202 (1999)

    Article  ADS  Google Scholar 

  21. M.L. de la Olvera, A. Maldonado, R. Asomoza, S. Tirado-Guerra, Thin Solid Films 411, 198–202 (2002)

    Article  ADS  Google Scholar 

  22. B.S. Li, Y.C. Liu, D.Z. Shen, J.Y. Zhang, Y.M. Lu, X.W. Fan, J. Cryst. Growth 249, 179–185 (2003)

    Article  ADS  Google Scholar 

  23. Fu. En-Gang, D.-M. Zhuang, G. Zhang, W.-F. Yang, M. Zhao, Appl. Surf. Sci. 217, 88–94 (2003)

    Article  Google Scholar 

  24. P. Scherrer, Gott Nachr 2, 98 (1918)

    Google Scholar 

  25. O. Kappertz, R. Drese, J. Vac. Sci. Technol. A 20(6), 2084 (2002)

    Article  ADS  Google Scholar 

  26. M. Chen, Z.L. Pei, C. Sun, L.S. Wen, X. Wang, J. Cryst. Growth 220, 254 (2000)

    Article  ADS  Google Scholar 

  27. B.D. Cullity, Elements of X-ray Diffraction, 2nd edition edn. (Addison-Wesley, Reading, MA, 1978)

    Google Scholar 

  28. K. Ellmer, J. Phys. D Appl. Phys. 33, R17 (2000)

    Article  ADS  Google Scholar 

  29. Optical Glass (N-BK7 and B270 types) properties, CRYSTRAN LTD UV-Visible-IR Specialist Optics, Registered in England No. 2863378

  30. J. Pankov, Optical Processes in Semiconductors (Dover, New York, 1971)

    Google Scholar 

  31. J. Tauc, Amorphous and Liquid Semiconductors (Plenum, London, 1974)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Salavati Dezfooli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hantehzadeh, M.R., Salavati Dezfooli, P. & Hoseini, S.A. Effect of O2/Ar Mixture on the Structural and Optical Properties of ZnO Thin Films Fabricated by DC Cylindrical Magnetron Sputtering. J Fusion Energ 31, 298–303 (2012). https://doi.org/10.1007/s10894-011-9466-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-011-9466-4

Keywords

Navigation