Skip to main content
Log in

On the Cosmic Nuclear Cycle and the Similarity of Nuclei and Stars

  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

 

Repulsive interactions between neutrons in compact stellar cores cause luminosity and a steady outflow of hydrogen from stellar surfaces. Neutron repulsion in more massive compact objects made by gravitational collapse produces violent, energetic, cosmological events (quasars, gamma ray bursts, and active galactic centers) that had been attributed to black holes before neutron repulsion was recognized. Rather than evolving in one direction by fusion, nuclear matter on the cosmological scale cycles between fusion, gravitational collapse, and dissociation (including neutron-emission). This cycle involves neither the production of matter in an initial “Big Bang” nor the disappearance of matter into black holes. The similarity Bohr noted between atomic and planetary structures extends to a similarity between nuclear and stellar structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. Burbidge E. M., Burbidge G. R., Fowler W. A. and Hoyle F. (1957). Rev. Mod. Phys. 29: 547–650

    Article  Google Scholar 

  2. Tuli J. K.(2000)., Nuclear Wallet Cards. National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY, 6th Ed., pp. 74

    Google Scholar 

  3. Manuel O., Bolon C., Katragada A. and Insall M.(2000). J. Fusion Energy 19: 93–98

    Article  Google Scholar 

  4. Manuel O., Miller E. and Katragada A.(2001). J. Fusion Energy, 20: 197–201

    Article  Google Scholar 

  5. Manuel O., Bolon C. and Zhong M. (2002). J. Radioanal. Nucl. Chem. 252: 3–7

    Article  Google Scholar 

  6. Manuel O. K. and Hwaung G. (1983). Meteoritics 18: 209–222

    Google Scholar 

  7. O. Manuel and S. Friberg, in Huguette Lacoste (Ed), 2002 SOHO 12/GONG+2002 Proceedings (ESA SP-517 SOHO/GONG, Noordwijk, The Netherlands, pp. 345–348, 2003)

  8. Manuel O., Myers W. A., Singh Y. and Pleess M. (2004). J. Fusion Energy 23: 55–62

    Article  Google Scholar 

  9. O. Manuel, S. Kamat, and M. Mozina, in Jose B. Almeida (Ed), Proceedings First Crisis in Cosmology Conf. (AIP, Melville, NY, in press) http://arxiv.org/abs/astro-ph/0510001

  10. Brown W. K.(1980). Astrophys. Space Sci. 72: 15–31

    Article  Google Scholar 

  11. Brown W. K. (1986). Astrophys. Space Sci. 121: 351–355

    Article  Google Scholar 

  12. Brown W. K. (1986). Astrophys. Space Sci. 122: 287–298

    Article  Google Scholar 

  13. Brown W. K. and Gritzo L. A. (1986). Astrophys. Space Sci. 123: 161–181

    Article  MATH  Google Scholar 

  14. Brown W. K. (1986). Astrophys. Space Sci. 126: 255–267

    Article  Google Scholar 

  15. G. A. Harutyunian, Astrophysics, 46, 81–91 (2003); Astrofizika, 46(1), 103–118 (2003)

    Google Scholar 

  16. M. Mozina, “The surface of the Sun”, http://www.thesurfaceofthesun.com/index.html

  17. H. H. Payne, Stellar Atmospheres (Harvard Observatory Monograph no. 1, Harvard University, Cambridge, MA, 1926) 215 pp

  18. Russell H. N. (1929). Astrophys. J. 70: 11–82

    Article  Google Scholar 

  19. S. Lefebvre and A. Kosovichev, Ap. J. Lett., in press http://xxx.lanl.gov/abs/astro-ph/0510111

  20. Manuel O. K. and Sabu D. D.(1975). Trans. Missouri Acad. Sci. 9: 104–122

    Google Scholar 

  21. Manuel O. K. and Sabu D. D.(1977). Science 195: 208–209

    PubMed  Google Scholar 

  22. O. Manuel, D. Ragland, K. Windler, J. Zirbel, L. Johannes, and A. Nolte, Bull. AAS, 30, abstract 29.01, 192nd AAS meeting, San Diego, CA, 8 June 1998. See also Ken Windler’s analysis: http://web.umr.edu/∼om/abstracts2001/windleranalysis.pdf

  23. O. Manuel and A. Katragada, “Is there a deficit of solar neutrinos?”, in Proceedings of the Second NO-VE Workshop on Neutrino Oscillations, edited by M. B. Ceolin, Campo Santo Stefano, Venice, Italy, Istituto Venento de Scienze, Lettere ed Arti (2003) pp. 548, Add 1–4

  24. Manuel O. K., Ninham M. W. and Friberg S. E. (2002). J. Fusion Energy 21: 193–199

    Article  Google Scholar 

  25. K. Birkeland, The Norwegian Aurora Polaris Expedition, 1902–1903, pp. 661–678 (1908) http://www.catastrophism.com/texts/birkeland/

  26. Toth P.(1977). Nature 270: 159–160

    Article  Google Scholar 

  27. H. Heiselberg, “Neutron Star Masses, Radii and Equation of State”, in Proceedings of the Conference on Compact Stars in the QCD Phase Diagram, eConf C010815, edited by R. Ouyed and F. Sannion, Copenhagen, Denmark, Nordic Institute for Theoretical Physics (2002) pp. 3–16, http://www.arxiv.org/abs/astro-ph/?0201465

  28. Lunney D., Pearson J. M. and Thibault C.(2003). Rev. Mod. Phys. 75: 1021–1082

    Article  Google Scholar 

  29. W. Nörtershäuser, Triump Newsletter, 3, no. 1 (April 2005). http://www.triumf.info/public/news/newsletter/V3N1/Lithium11.htm

  30. Bohr N. (1913). Phil. Mag. 26: 1–25

    MATH  Google Scholar 

  31. Kuroda P. K. and Myers W.A.(1996). J. Radioanal. Nucl. Chem. 211: 539–555

    Article  Google Scholar 

  32. Kuroda P. K. and Myers W. A. (1997). Radiochimica Acta 77: 15–20

    Google Scholar 

  33. C. Struck, “Galactic collisions”, in Physics Reports, 321, 1–137 (1999) http://arxiv.org/html/astro-ph/9908269/homepage.html

  34. Begelman M. C., Blandford R. D. and Rees M. J. (1980). Nature 287: 307–309

    Article  Google Scholar 

  35. C. Jooss and J. Lutz, “A suggestion for matter phase transitions in galactic cores”, abstract of paper submitted to the Hirschegg Workshop ’06: Astrophysics and Nuclear Structure, Hirschegg/Austria, 15–21 January 2006

  36. Ninham B. W.(1963). Physics Lett. 4: 278–279

    Article  MathSciNet  Google Scholar 

  37. Arp H. C. (2003). Catalogue of Discordant Redshift Associations. C. Roy Keys, Inc, Montreal, Quebec, Canada, pp. 234

    Google Scholar 

  38. M. Muno, et al., Ap. J. Lett., in press. See news reports http://chandra.harvard.edu/ http://www.sciencedaily.com/releases/2005/11/051103080649.htm

  39. Herndon J. M. (1992). Naturwissenschaften 79: 7–14

    Article  Google Scholar 

  40. Kuroda P. K.(1956). J. Chem. Phys. 25: 781–782

    Article  Google Scholar 

Download references

Acknowledgments

Support from the University of Missouri-Rolla and permission from the Foundation for Chemical Research, Inc. (FCR) to reproduce figures from FCR reports are gratefully acknowledged. NASA and Lockheed Martin’s TRACE satellite team made the image of rigid structures beneath the fluid photosphere and the movie of a solar flare coming from that region (Figure 2). Cynthia Bolon, Shelonda Finch, Daniel Ragland, Matthew Seelke and Bing Zhang helped develop the “Cradle of the Nuclides” (Figure 3) that exposed repulsive neutron interactions. Moral support is gratefully acknowledged from former UMR Chancellors, Dr. Raymond L. Bisplinghoff (1975–1976) and Dr. Gary Thomas (2000–2005); former UMR Deans of Arts and Sciences, Dr. Marvin M. Barker (1980–1990) and Dr. Russell D. Buhite (1997–2002), and former UMR Chair of Chemistry, Professor Stig E. Friberg (1976–1979). This paper is dedicated to the memory of the late Professor Paul Kazuo Kuroda and his former student, Dr. Dwarka Das Sabu, for their deep personal commitment to the basic precepts of science and for their discoveries, including several papers [20,21,31,32,40] that contributed to the conclusions reached here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Manuel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manuel, O., Mozina, M. & Ratcliffe, H. On the Cosmic Nuclear Cycle and the Similarity of Nuclei and Stars. J Fusion Energ 25, 107–114 (2006). https://doi.org/10.1007/s10894-006-9009-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-006-9009-6

Keywords

Navigation