Skip to main content
Log in

Kinetic Models of Combustion of Kerosene

  • REVIEWS
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Consideration has been given to the current status of research on the development of kinetic models of combustion of kerosene and its components. Surrogate models of kerosene have been analyzed that describe the physical and chemical properties of an actual fuel and are used in developing detailed and reduced kinetic models. Experimental data have been reviewed based on which testing of the kinetic models with a varying degree of complexity is carried out. Examples of the use of kinetic models in modeling numerically processes occurring in actual power-generating units have been given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Segal, The Scramjet Engine: Processes and Characteristics, Cambridge University Press, Cambridge (2009).

    Book  Google Scholar 

  2. M. S. Assad, O. G. Penyazkov, I. I. Chernukho, and Khaled Alhussan, Detonation regime of combustion of heptane and Jet A-1 propellant in a less than 0.5-m-long small-size combustor, J. Eng. Phys. Thermophys., 94, No. 5, 1285–1289 (2021).

  3. E. D. Gonzalez-Juez, A. R. Kerstein, R. Ranjan, and S. Menon, Advances and challenges in modeling high-speed turbulent combustion in propulsion systems, Prog. Energy Combust. Sci., 60, No. 1, 26–67 (2017).

    Article  Google Scholar 

  4. F. Battin-Leclerc, Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates, Prog. Energy Combust. Sci., 34, No. 4, 440–498 (2008).

    Article  Google Scholar 

  5. J. M. Simmie, Detailed chemical kinetic models for the combustion of hydrocarbon fuels, Prog. Energy Combust. Sci., 29, No. 6, 599–631 (2003).

    Article  Google Scholar 

  6. C. K. Westbrook, W. J. Pitz, O. Herbinet, H. J. Curran, and E. J. Silke, A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane, Combust. Flame, 156, No. 1, 181–199 (2009).

    Article  Google Scholar 

  7. M. Zeng, W. Yuan, W. Li, Y. Zhang, C. Cao, T. Li, and J. Zou, A comprehensive experimental and kinetic modeling study of n-tetradecane combustion, Energy Fuels, 31, No. 11, 12712–12720 (2017).

    Article  Google Scholar 

  8. P. Dagaut and M. Cathonnet, The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling, Prog. Energy Combust. Sci., 32, No. 1, 48–92 (2006).

    Article  Google Scholar 

  9. A. J. Dean, O. G. Penyazkov, K. L. Sevruk, and B. Varatharajan, Autoignition of surrogate fuels at elevated temperatures and pressures, Proc. Combust. Inst., 31, No. 2, 2481–2488 (200 7).

  10. A. A. Konn ov, A. Mohamm ad, V. R. Kisho re, N. I. K im, C. Prathap, and S. Kumar, A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel + air mixtures, Prog. Energy Combust. Sci., 68, No. 1, 197–267 (2018).

  11. P. Dagaut, F. Karsenty, G. Dayma, P. Dievart, C. Hadj-Ali, A. Mze-Ahmed, M. Braun-Unkhoff, J. Herzler, T. Kathrotia, T. Kick, C. Naumann, U. Riedel, and L. Thomas, Experimental and detailed kinetic model for the oxidation of a gas to Liquid (GtL) jet fuel, Combust. Flame, 161, No. 3, 835–847 (2014).

    Article  Google Scholar 

  12. M. Wang, R. Dewil, K. Maniatis, J. Wheeldon, T. Tan, J. Baeyens, and Y. Fang, Biomass-derived aviation fuels: Challenges and perspective, Prog. Energy Combust. Sci., 74, No. 1, 31–49 (2019).

    Article  Google Scholar 

  13. O. V. Matvienko, Mathematical modeling of the heat transfer and chemical reaction of a swirling flow of a dissociated gas, J. Eng. Phys. Thermophys., 89, No. 1, 127–134 (2016).

    Article  Google Scholar 

  14. E. Garnier, N. Adams, and P. Sagaut, Large Eddy Simulation for Compressible Flows, Springer, Berlin (2009).

    Book  Google Scholar 

  15. S. Subramaniam, Lagrangian-Eulerian methods for multiphase flows, Prog. Energy Combust. Sci., 39, No. 2, 215–245 (2013).

    Article  Google Scholar 

  16. H. Koo, V. Raman, and P. L. Varghese, Direct numerical simulation of supersonic combustion with thermal nonequilibrium, Proc. Combust. Inst., 35, No. 2, 2145–2153 (2015).

    Article  Google Scholar 

  17. T. Edwards, Kerosene fuels for aerospace propulsion — Composition and properties, AIAA Paper, No. 2002-3874 (2002).

  18. W. Huang, F. Chen, H. Liu, and X. Huang, Modeling chemical mechanism for surrogate jet fuel under scramjet operating conditions, AIAA Paper, No. 2016-0182 (2016).

  19. G. Ya. Gerasimov and S. A. Losev, Kinetic models of combustion of kerosene and its components, J. Eng. Phys. Thermophys., 78, No. 6, 1059–1070 (2005).

    Article  Google Scholar 

  20. N. Zettervall, C. Fureby, and E. J. K. Nilsson, A reduced chemical kinetic reaction mechanism for kerosene–air combustion, Fuel, 269, Article ID 117446, 1–11 (2020).

    Google Scholar 

  21. P. Dagaut, On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel, Phys. Chem. Chem. Phys., 4, No. 11, 2079–2094 (2002).

    Article  Google Scholar 

  22. S. Granata, T. Faravelli, and E. Ranzi, A wide range kinetic modeling study of the pyrolysis and combustion of naphthenes, Combust. Flame, 132, No. 4, 533–544 (2003).

    Article  Google Scholar 

  23. N. A. Slavinskaya, A. Zizin, and M. Aigner, On model design of a surrogate fuel formulation, J. Eng. Gas Turbines Power, 132, No. 11, Article ID 111501 (2010).

  24. E. Song and J. Song, Modeling of kerosene combustion under fuel-rich conditions, Adv. Mech. Eng., 9, No. 7, 1–11 (2017).

    Article  Google Scholar 

  25. S. Dooley, S. H. Won, M. Chaos, J. Heyne, Y. Ju, F. L. Dryer, K. Kumar, C. J. Sung, H. Wang, M. A. Oehlschlaeger, R. J. Santoro, and T. A. Litzinger, A jet fuel surrogate formulated by real fuel properties, Combust. Flame, 157, No. 12, 2333–2339 (2010).

    Article  Google Scholar 

  26. D. Kim, J. Martz, and A. Violi, A surrogate for emulating the physical and chemical properties of conventional jet fuel, Combust. Flame, 161, No. 6, 1489–1498 (2014).

    Article  Google Scholar 

  27. Y. Mao, L. Yu, Z. Wu, W. Tao, S. Wang, C. Ruan, L. Zhu, and X. Lu, Experimental and kinetic modeling study of ignition characteristics of RP-3 kerosene over low-to-high temperature ranges in a heated rapid compression machine and a heated shock tube, Combust. Flame, 203, No. 1, 157–169 (2019).

    Article  Google Scholar 

  28. Z. Wu, Y. Mao, M. Raza, J. Zhu, Y. Feng, S. Wang, Y. Qian, L. Yu, and X. Lu, Surrogate fuels for RP-3 kerosene formulated by emulating molecular structures, functional groups, physical and chemical properties, Combust. Flame, 208, No. 1, 388–401 (2019).

    Article  Google Scholar 

  29. N. Slavinskaya, U. Riedel, E. Saibov, J. Herzler, C. Naumann, M. Saffaripour, and L. Thomas, Kinetic surrogate model for GRL kerosene, AIAA Paper, No. 2014–0126 (2014).

  30. N. Al-Esawi and M. Al Qubeissi, A new approach to formulation of complex fuel surrogates, Fuel, 283, Article ID 118923, 1–9 (2021).

  31. N. S. Titova, S. A. Torokhov, and A. M. Starik, On kinetic mechanisms of oxidation of n-decane, Fiz. Goreniya Vzryva, 47, No. 2, 3–22 (2011).

    Google Scholar 

  32. A. A. Konnov, Remaining uncertainties in the kinetic mechanism of hydrogen combustion, Combust. Flame, 152, No. 4, 507–528 (2008).

    Article  Google Scholar 

  33. Z. Hong, D. F. Davidson, and R. K. Hanson, An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements, Combust. Flame, 158, No. 4, 633–644 (2011).

    Article  Google Scholar 

  34. G. Ya. Gerasimov and O. P. Shatalov, Kinetic mechanism of combustion of hydrogen–oxygen mixtures, J. Eng. Phys. Thermophys., 86, No. 5, 987–995 (2013).

    Article  Google Scholar 

  35. N. A. Slavinskaya, M. Abbasi, J. H. Starcke, R. Whitside, A. Mirzayeva, U. Riedel, W. Li, J. Oreluk, A. Hegde, A. Packard, M. Frenklach, G. Gerasimov, and O. Shatalov, Development of an uncertainty quantification predictive chemical reaction model for syngas combustion, Energy Fuels, 31, No. 3, 2274–2297 (2017).

    Article  Google Scholar 

  36. D. L. Baulch, C. T. Bowman, C. J. Cobos, R. A. Cox, T. Just, J. A. Kerr, M. J. Pilling, D. Stocker, J. Troe, W. Tsang, R. W. Walker, and J. Warnatz, Evaluated kinetic data for combustion modeling: Supplement II, J. Phys. Chem. Ref. Data, 34, No. 3, 757–1397 (2005).

    Article  Google Scholar 

  37. C. V. Naik and A. M. Dean, Detailed kinetic modeling of ethane oxidation, Combust. Flame, 145, No. 1, 16–37 (2006).

    Article  Google Scholar 

  38. E. Ranzi, A. Frassoldati, A. Stagni, M. Pelucchi, A. Cuoci, and T. Faravelli, Reduced kinetic schemes of complex reaction systems: Fossil and biomass-derived transportation fuels, Int. J. Chem. Kinet., 46, No. 9, 512–542 (2014).

    Article  Google Scholar 

  39. Z. Hong, K. Y. Lam, D. F. Davidson, and R. K. Hanson, A comparative study of the oxidation characteristics of cyclohexane, methylcyclohexane, and n-butylcyclohexane at high temperatures, Combust. Flame, 158, No. 8, 1456–1468 (2011).

    Article  Google Scholar 

  40. E. J. Silke, W. J. Pitz, C. K. Westbrook, and M. Ribaucour, Detailed chemical kinetic modeling of cyclohexane oxidation, J. Phys. Chem. A, 111, No. 19, 3761–3775 (2007).

    Article  Google Scholar 

  41. W. J. Pitz, C. V. Naik, T. N. Mhaolduin, C. K. Westbrook, H. J. Curran, J. P. Orme, and J. M. Simmie, Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine, Proc. Combust. Inst., 31, No. 1, 267–275 (2007).

    Article  Google Scholar 

  42. F. Zhang, Z. Wang, Z. Wang, L. Zhang, Y. Li, and F. Qi, Kinetics of decomposition and isomerization of methylcyclohexane: Starting point for studying monoalkylated cyclohexanes combustion, Energy Fuels, 27, No. 3, 1679–1687 (2013).

    Article  Google Scholar 

  43. S. A. Skeen, B. Yang, A. W. Jasper, W. J. Pitz, and N. Hansen, Chemical structures of low-pressure premixed methylcyclohexane flames as benchmarks for the development of a predictive combustion chemistry model, Energy Fuels, 25, No. 12, 5611–5625 (2011).

    Article  Google Scholar 

  44. Z. Wang, H. Bian, Y. Wang, L. Zhang, Y. Li, F. Zhang, and F. Qi, Investigation on primary decomposition of ethylcyclohexane at atmospheric pressure, Proc. Combust. Inst., 35, No. 1, 367–375 (2015).

    Article  Google Scholar 

  45. W. Sun, A. Hamadi, S. Abid, N. Chaumeix, and A. Comandini, A comparative kinetic study of C 8–C 10 linear alkylbenzenes pyrolysis in a single-pulse shock tube, Combust. Flame, 221, No. 1, 136–149 (2020).

    Article  Google Scholar 

  46. W. Yuan, Y. Li, P. Dagaut, J. Yang, and F. Qi, Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation, Combust. Flame, 162, No. 1, 3–21 (2015).

  47. K. Zhang, Q. Xin, Z. Mu, Z. Niu, and Z. Wang, Numerical simulation of diesel combustion based on n-heptane and toluene, Propul. Power Res., 8, No. 2, 121–127 (2019) .

    Article  Google Scholar 

  48. C. S. McEna lly, L. D. Pfefferle, B. Atakan, and K. Kohse-Höinghaus, Studies of aromatic hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap, Prog. Energy Combust. Sci., 32, No. 3, 247–294 (2006).

  49. A. Matsugi and A. Miyoshi, Modeling of two- and three-ring aromatics formation in the pyrolysis of toluene, Proc. Combust. Inst., 34, No. 1, 269–277 (2013).

    Article  Google Scholar 

  50. L. V. Gurvich, IVTANTERMO — An automated system of data on thermodynamic properties of substances, Vestn. Akad. Nauk SSSR, No. 3, 54–65 (1983).

  51. A. Burcat and B. Ruscic, Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables, Report No. ANL-05/20 and TAE 960, Technion-IIT, Aerospace Engineering, and Argonne National Laboratory, Chemistry Division, Department of Energy, Oak Ridge: U.S. (2005).

  52. J. Troe, From quantum chemistry to dissociation kinetics: What we need to know, Mol. Phys., 112, No. 18, 2374–2383 (2014).

    Article  Google Scholar 

  53. M. Frenklach, Z. Liu, R. I. Singh, G. R. Galimova, V. N. Azyazov, and A. M. Mebel, Detailed, sterically-resolved modeling of soot oxidation: Role of O atoms, interplay with particle nanostructure, and emergence of inner particle burning, Combust. Flame, 188, 284–306 (2018).

    Article  Google Scholar 

  54. V. S. Krasnoukhov, D. P. Porfiriev, I. P. Zavershinskiy, V. N. Azyazov, and A. M. Mebel, Kinetics of the CH3 + C5H5 reaction: A theoretical study, J. Phys. Chem. A, 121, No. 48, 9191–9200 (2017).

    Article  Google Scholar 

  55. L. Zhao, T. Yang, R. I. Kaizer, T. P. Troy, M. Ahmed, D. Belisario-Lara, J. M. Ribeiro, and A. M. Mebel, A Combined experimental and computational study on the unimolecular decomposition of JP-8 jet fuel surrogates I: n-Decane (n-C10H22), J. Phys. Chem. A, 121, No. 6, 1261–1280 (2017).

    Article  Google Scholar 

  56. P. Liu, Z. Li, A. Bennett, H. Lin, S. M. Sarathy, and W. L. Roberts, The site effect on PAHs formation in HACA-based mass growth process, Combust. Flame, 199, No. 1, 54–68 (2019).

    Article  Google Scholar 

  57. F. Esposito and I. Armenise, Reactive, inelastic, and dissociation processes in collisions of atomic nitrogen with molecular oxygen, J. Phys. Chem. A, 125, No. 18, 3953–3964 (2021).

    Article  Google Scholar 

  58. R. W. Bates, D. M. Golden, R. K. Hanson, and C. T. Bowman, Experimental study and modeling of the reaction H + O2 + M → HO2 + M (M = Ar, N2, H2O) at elevated pressures and temperatures between 1050 and 1250 K, Phys. Chem. Chem. Phys., 3, No. 12, 2337–2342 (2001).

    Article  Google Scholar 

  59. Z. Hong, D. F. Davidson, E. A. Barbour, and R. K. Hanson, A new shock tube study of the H + O2 → OH + O reaction rate using tunable diode laser absorption near 2.5 μm, Proc. Combust. Inst., 33, No. 1, 309–316 (2011).

  60. K. Sun, S. Wang, R. Sur, X. Chao, J. B. Jeffries, and R. K. Hanson, Sensitive and rapid laser diagnostic for shock tube kinetics studies using cavity-enhanced absorption spectroscopy, Opt. Express., 22, No. 8, 9291–9300 (2014).

    Article  Google Scholar 

  61. R. K. Hanson and D. F. Davidson, Recent advances in laser absorption and shock tube methods for studies of combustion chemistry, Prog. Energy Combust. Sci., 44, 103–114 (2014).

    Article  Google Scholar 

  62. N. M. Vandewiele, K. M. Van Geem, M. F. Reyniers, and G. B. Marin, Genesys: Kinetic model construction using chemo-informatics, Chem. Eng. J., 207208, 526–538 (2012).

    Article  Google Scholar 

  63. F. Sultan, M. Shahzad, and M. Ali, Spectral quasi equilibrium manifold and intrinsic low dimensional manifold: A multi-step reaction mechanism, Int. Commun. Heat Mass Transf., 121, No. 105098 (2021).

  64. G. N. Simm, A. C. Vaucher, and M. Reiher, Exploration of reaction pathways and chemical transformation networks, J. Phys. Chem. A, 123, No. 2, 385–389 (2019).

    Article  Google Scholar 

  65. J. A. Miller, R. Sivaramakrishnan, Y. Tao, C. F. Goldsmith, M. P. Burke, A. W. Jasper, N. Hansen, N. J. Labbe, P. Glarborg, and J. Zádor, Combustion chemistry in the twenty-first century: Developing theory-informed chemical kinetics models, Prog. Energy Combust. Sci., 83, Article ID 100886 (2021).

  66. R. P. Lindstedt and L. Q. Maurice, Detailed chemical-kinetic model for aviation fuels, J. Propul. Power, 16, No. 2, 187–195 (2000).

    Article  Google Scholar 

  67. G. Bikas and N. Peters, Kinetic modeling of n-decane combustion and autoignition, Combust. Flame, 126, Nos. 1–2, 1456–1475 (2001).

    Article  Google Scholar 

  68. A. Ristory, P. Dagaut, and M. Cathonnet, The oxidation of n-hexadecane: Experimental and detailed kinetic modeling, Combust. Flame, 125, No. 3, 1128–1137 (2001).

    Article  Google Scholar 

  69. S. Tanaka, F. Ayala, and J. C. Keck, A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine, Combust. Flame, 133, No. 4, 467–481 (2003).

    Article  Google Scholar 

  70. M. Mehl, W. J. Pitz, C. K. Westbrook, and H. J. Curran, Kinetic modeling of gasoline surrogate components and mixtures under engine conditions, Proc. Combust. Inst., 33, No. 1, 193–200 (2011).

    Article  Google Scholar 

  71. H. R. Zhang, E. G. Eddings, and A. F. Sarofim, Criteria for selection of components for surrogates of natural gas and transportation fuels, Proc. Combust. Inst., 31, No. 1, 401–409 (2007).

    Article  Google Scholar 

  72. F. Buda, B. Heyberger, R. Fournet, P. A. Glaude, V. Warth, and F. Battin-Leclerc, Modeling of the gas-phase oxidation of cyclohexane, Energy Fuels, 20, No. 4, 1450–1459 (2006).

    Article  Google Scholar 

  73. J. F. Griffiths, R. Piazzesi, E. M. Sazhina, S. S. Sazhin, P. A. Glaude, and M. R. Heikal, CFD modelling of cyclohexane auto-ignition in an RCM, Fuel, 96, No. 1, 192–203 (2012).

    Article  Google Scholar 

  74. Z. Wang, L. Ye, W. Yuan, L. Zhang, Y. Wang, Z. Cheng, F. Zhang, and F. Qi, Experimental and kinetic modeling study on methylcyclohexane pyrolysis and combustion, Combust. Flame, 161, No. 1, 84–100 (2014).

    Article  Google Scholar 

  75. W. Yuan, Y. Li, P. Dagaut, J. Yang, and F. Qi, Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. II. A comprehensive kinetic modeling study, Combust. Flame, 162, No. 1, 22–40 (2015).

  76. W. Yuan, Y. Li, G. Pengloan, C. Togbe, P. Dagaut, and F. Qi, A comprehensive experimental and kinetic modeling study of ethylbenzene combustion, Combust. Flame, 166, No. 1, 255–265 (2016).

    Article  Google Scholar 

  77. S. Xi, J. Xue, F. Wang, and X. Li, Reduction of large-size combustion mechanisms of n-decane and n-dodecane with an improved sensitivity analysis method, Combust. Flame, 222, No. 1, 326–335 (2020).

    Article  Google Scholar 

  78. Y. Chang, M. Jia, Y. Liu, Y. Li, and M. Xie, Development of a new skeletal mechanism for n-decane oxidation under engine-relevant conditions based on a decoupling methodology, Combust. Flame, 160, No. 8, 1315–1332 (2013).

    Article  Google Scholar 

  79. N. A. Slavinskaya, Skeletal mechanism for kerosene combustion with PAH production, AIAA Paper, No. 2008-992 (2008).

  80. W. Zeng, S. Liang, H.-X. Li, and H.-A. Ma, Chemical kinetic simulation of kerosene combustion in an individual flame tube, J. Adv. Res., 5, 357–366 (2014).

    Article  Google Scholar 

  81. K. L. Tay, W. Yang, B. Mohan, H. A. D. Zhou, and W. Yu, Development of a robust and compact kerosene–diesel reaction mechanism for diesel engines, Energy Convers. Manage., 108, No. 1, 446–458 (2016).

    Article  Google Scholar 

  82. N. Zettervall, C. Fureby, and E. J. K. Nilsson, A small skeletal kinetic mechanism for kerosene combustion, Energy Fuels, 30, No. 11, 9801–9813 (2016).

    Article  Google Scholar 

  83. W. Yao, Y. Yuan, X. Li, J. Wang, K. Wu, and X. Fan, Comparative study of elliptic and round scramjet combustors fueled by RP-3, J. Propul. Power, 34, No. 3, 772–786 (2018).

    Article  Google Scholar 

  84. Y. Yan, Y. Liu, W. Fang, Y. Liu, and J. Li, A simplified chemical reaction mechanism for two-component RP-3 kerosene surrogate fuel and its verification, Fuel, 227, No. 1, 127–134 (2018).

    Article  Google Scholar 

  85. M. Jia and M. Xie, A chemical kinetics model of iso-octane oxidation for HCCI engines, Fuel, 85, Nos. 17–18, 2593–2604 (2006).

    Article  Google Scholar 

  86. F. Maroteaux, Development of a two-part n-heptane oxidation mechanism for two stage combustion process in internal combustion engines, Combust. Flame, 186, No. 1, 1–16 (2017).

    Article  Google Scholar 

  87. A. Vandersickel, Y. M. Wright, and K. Boulouchos, Global reaction mechanism for the auto-ignition of full boiling range gasoline and kerosene fuels, Combust. Theor. Model., 17, No. 6, 1020–1052 (2013).

    Article  Google Scholar 

  88. B. Franzelli, E. Riber, M. Sanjose, and T. Poinsot, A two-step chemical scheme for kerosene–air premixed flames, Combust. Flame, 157, No. 7, 1364–1373 (2010).

    Article  Google Scholar 

  89. T.-S. Wang, Thermophysics characterization of kerosene combustion, J. Thermophys. Heat Transf., 15, No. 2, 140–147 (2001).

    Article  Google Scholar 

  90. J.-Y. Choi, A quasi-global mechanism of kerosene combustion for propulsion applications, AIAA Paper, No. 2011-5853 (2011).

  91. A. V. Fedorov, D. A. Tropin, O. G. Penyazkov, V. V. Leshchevich, and S. Yu. Shimchenko, Theoretical and experimental study of chemical transformations of a methane–hydrogen–coal particles mixture in a rapid-compression machine, J. Eng. Phy s. Thermophys., 90, No. 4, 781–788 (2017).

    Article  Google Scholar 

  92. V. A. Alekseev , J. V. Solovio va-Sokolova, S. S. Matveev, I. V. Chechet, S. G. Matveev, and A. A. Konnov, Laminar burning velocities of n-decane and binary kerosene surrogate mixture, Fuel, 187, No. 1, 429–434 (2017).

  93. U. Pfahl, K. Fieweger, and G. Adomeit, Self-ignition of diesel–relevant hydrocarbon–air mixtures under engine conditions, Symp. (Int.) Combust., 26, No. 1, 781–789 (1996).

  94. E. Olchanski and A. Burcat, Dacane oxidation in a shock tube, Int. J. Chem. Kinet., 38, No. 12, 703–713 (2006).

    Article  Google Scholar 

  95. S. S. Vasu, D. F. Davidson, and R. K. Hanson, Jet fuel ignition delay times: Shock tube experiments over wide conditions and surrogate model predictions, Combust. Flame, 152, Nos. 1–2, 125–143 (2008).

    Article  Google Scholar 

  96. H.-P. S. Shen, J. Steinberg, J. Vanderover, and M. A. Oehlschlaeger, A shock tube study of the ignition of n-heptane, n-decane, n-dodecane, and n-tetradecane at elevated pressures, Energy Fuels, 23, No. 5, 2482–2489 (2009).

    Article  Google Scholar 

  97. H. Wang and M. A. Oehlschlaeger, Autoignition studies of conventional and Fischer–Tropsch jet fuels, Fuel, 98, No. 1, 249–258 (2012).

    Article  Google Scholar 

  98. D. R. Haylett, D. F. Davidson, and R. K. Hanson, Ignition delay times of low-vapor-pressure fuels measured using an aerosol shock tube, Combust. Flame, 159, No. 2, 552–561 (2012).

    Article  Google Scholar 

  99. V. P. Zhukov, V. A. Sechenov, and A. Yu. Starikovskiy, Autoignition of kerosene (Jet-A)/air mixtures behind reflected shock waves, Fuel, 126, 169–176 (2014).

    Article  Google Scholar 

  100. H. S. Han, C. J. Kim, C. H. Cho, C. H. Sohn, and J. Han, Ignition delay time and sooting propensity of a kerosene aviation jet fuel and its derivative blended with a bio-jet fuel, Fuel, 232, 724–728 (2018).

    Article  Google Scholar 

  101. B. Sirjean, F. Buda, H. Hakka, P. A. Glaude, R. Fournet, V. Warth, F. Battin-Leclerc, and M. Ruiz-Lopez, The autoignition of cyclopentane and cyclohexane in a shock tube, Proc. Combust. Inst., 31, No. 1, 277–284 (2007).

    Article  Google Scholar 

  102. S. S. Vasu, D. F. Davidson, Z. Hong, and R. K. Hanson, Shock tube study of methyl-cyclohexane ignition over a wide range of pressure and temp erature, Energy Fuels, 23, No. 1, 175–185 (2009).

    Article  Google Scholar 

  103. D. F. Davidson, B. M. Gauthier, and R. K. Hanson, Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures, Proc. Combust. Inst., 30, No. 1, 1175–1182 (2005).

    Article  Google Scholar 

  104. H.-P. S. Shen and M. A. Oehlschlaeger, The autoignition of C8H10 aromatics at moderate temperatures and elevated pressures, Combust. F lame, 156, No . 5, 1053–106 2 (2009).

  105. D. Darcy, C. J. Tobin, K. Yasunaga, J. M. Simmie, J. Würmel, W. K. Metcalfe, N. Niass, S. S. Ahmed, C. K. Westbrook, and H. J. Curran, A high pressure shock tube study of n-propylbenzene oxidation and its comparison with n-butylbenzene, Combust. Flame, 159, No. 7, 2219–2232 (2012).

    Article  Google Scholar 

  106. E. Ranzi, A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli, A. Kelley., and C. Law, Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels, Prog. Energy Combust. Sci., 38, No. 4, 468–501 (2012).

  107. Z. Zhao, J. Li, A. Kazakov, F. L. Dryer, and S. P. Zeppieri, Burning velocities and a high-temperature skeletal kinetic model for n-decane, Combust. Sci. Technol., 177, No. 1, 89–106 (2004).

    Article  Google Scholar 

  108. K. Kumar and C.-J. Sung, Laminar flame speeds and extinction limits of preheated n-decane/O2/N2 and n-dodecane/O2/N2 mixtures, Combust. Flame, 151, Nos. 1–2, 209–224 (2007).

    Article  Google Scholar 

  109. A. Moghaddas, K. Eisazadeh-Far, and H. Metghalchi, Laminar burning speed measurement of premixed n-decane/air mixtures using spherically expanding flames at high temperatures and pressures, Combust. Flame, 159, No. 4, 1437–1443 (2012).

    Article  Google Scholar 

  110. F. Luo, W. Song, W. Chen, and Y. Long, Investigation of kerosene supersonic combustion performance with hydrogen addition and fuel additive at low Mach inflow conditions, Fuel, 285, Article ID 119139, 1–13 (2021).

    Google Scholar 

  111. G. Borghesi, A. Krisman, T. Lu, and J. H. Chen, Direct numerical simulation of a temporally evolving air/n-dodecane jet at low-temperature diesel-relevant conditions, Combust. Flame, 195, No. 1, 183–202 (2018).

    Article  Google Scholar 

  112. Yu. V. Tunik, G. Ya. Gerasimov, V. Yu. Levashov, and N. A. Slavinskaya, Numerical modeling of detonation combustion of a kerosene vapor in a divergent nozzle, Fiz. Goreniya Vzryva, 56, No. 3, 106–114 (2020).

    Google Scholar 

  113. Y. V. Tunik, Numerical solution of test problems using a modified Godunov scheme, Comp. Math. Math. Phys., 58, No. 10, 1573–1584 (2018).

    Article  MathSciNet  Google Scholar 

  114. Y. Yan, Y. Liu, D. Di, C. Dai, and J. Li, Simplified chemical reaction mechanism for surrogate fuel of aviation kerosene and its verification, Energy Fuels, 30, No. 12, 10847–10857 (2016).

    Article  Google Scholar 

  115. G. Eckel, J. Grohmann, L. Cantu, N. Slavinskaya, T. Kathrotia, M. Rachner, P. Le Clercq, W. Meier, and M. Aigner, LES of a swirl-stabilized kerosene spray flame with a multi-component vaporization model and detailed chemistry, Combust. Flame, 207, No. 1, 134–152 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Levashov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 97, No. 2, pp. 515–534, March–April, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerasimov, G.Y., Levashov, V.Y. Kinetic Models of Combustion of Kerosene. J Eng Phys Thermophy 97, 506–524 (2024). https://doi.org/10.1007/s10891-024-02918-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-024-02918-x

Keywords

Navigation