Skip to main content
Log in

Kinetic mechanism of combustion of hydrogen–oxygen mixtures

  • Heat and Mass Transfer in Combustion Processes
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Based on the analysis of the databases published in the scientific literature and concerned with the reaction rate constants in the H2/O2 system, a new kinetic mechanism is suggested for describing the processes of ignition, combustion, and detonation in hydrogen–oxygen gaseous mixtures. Attention is mainly focused on consideration of a low-temperature region (T < 1000 K) where a chain of reactions of the formation and subsequent decomposition of hydrogen peroxide plays the major role in the system ignition. The proposed mechanism has been tested by comparing computational results with available data on measurement of the ignition-delay time in shock tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Cecere, A. Ingenito, E. Giacomazzi, L. Romagnosi, and C. Bruno, Hydrogen/air supersonic combustion for future hypersonic vehicles, Int. J. Hydrogen Energy, 36, No. 18, 11969–11984 (2011).

    Article  Google Scholar 

  2. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. J. Gardiner Jr, V. V. Lissianski, and Z. Qin, GRI–Mech 3.0 Reaction Mechanism. 2002. http://www.me.berkeley.edu/gri_mech/.

  3. M. O’Conaire, H. J. Curran, J. M. Simmie, W. J. Pitz, and C. K. Westbrook, A comprehensive modeling study of hydrogen oxidation, Int. J. Chem. Kinet., 36, No. 11, 603–622 (2004).

    Article  Google Scholar 

  4. J. Li, Z. Zhao, A. Kazakov, and F. Dryer, An updated comprehensive kinetic model of hydrogen combustion. Int. J. Chem. Kinet., 36, No. 10, 566–575 (2004).

    Article  Google Scholar 

  5. M. Mueller, T. Kim, R. Yetter, and F. Dryer, Flow reactor studies and kinetic modeling of the H2/O2 reaction, Int. J. Chem. Kinet., 31, No. 2, 113–125 (1999).

    Article  Google Scholar 

  6. A. A. Konnov, Remaining uncertainties in the kinetic mechanism of hydrogen combustion, Combust. Flame, 152, No. 4, 507–528 (2008).

    Article  MathSciNet  Google Scholar 

  7. Z. Hong, D. F. Davidson, and R. K. Hanson, An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements, Combust. Flame, 158, No. 4, 633–644 (2011).

    Article  Google Scholar 

  8. T. Weydahl, M. Poyyapakkam, M. Seljeskog, and N. E. L. Haugen, Assessment of existing H2/O2 chemical reaction mechanisms at reheat gas turbine conditions, Int. J. Hydrogen Energy, 36, No. 18, 12025–12034 (2011).

    Article  Google Scholar 

  9. R. Atkinson, D. L. Baulch, R. A. Cox, et al., Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I — gas phase reactions of O x , HO x , NO x , and SO x species, Atmos. Chem. Phys., 4, No. 6, 1461–1738 (2004).

    Article  Google Scholar 

  10. J. Warnatz, U. Maas, and R. W. Dibble, Combustion, Springer, Berlin (2003).

    Google Scholar 

  11. W. Tsang and R. F. Hampson, Chemical kinetic database for combustion chemistry, Part I. Methane and related compounds, J. Phys. Chem. Ref. Data, 15, No. 3, 1087–1279 (1986).

    Article  Google Scholar 

  12. D. L. Baulch, C. T. Bowman, C. J. Cobos, et al., Evaluated kinetic data for combustion modeling: Supplement II, J. Phys. Chem. Ref. Data, 34, No. 3, 757–1397 (2005).

    Article  Google Scholar 

  13. D. L. Baulch, D. D. Drysdale, and D. G. Horne, Evaluated kinetic database for high temperature reactions, in: Homogeneous Gas Phase Reactions of the H 2 O 2 System, Vol. 1, Butterworths, London (1972).

  14. temperature reactions, in: Homogeneous Gas Phase Reactions of the O 2 O 3 System and the COO 2 H 2 System, and Sulfur-Containing Species, Vol. 3, Butterworths, London (1976).

  15. D. L. Baulch, R. A. Cox, P. J. Crutzen, et al., Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement I, J. Phys. Chem. Ref. Data, 11, No. 2, 327–496 (1982).

    Article  Google Scholar 

  16. N. Cohen and K. R. Westberg, Chemical kinetic data sheets for high-temperature chemical reactions, J. Phys. Chem. Ref. Data, 12, No. 3, 531–590 (1983).

    Article  Google Scholar 

  17. L. B. Ibragimova, G. D. Smekhov, and O. P. Shatalov, Comparative analysis of the rates of chemical reactions describing the combustion of hydrogen–oxygen mixtures (2009), http://www.chemphys.edu.ru/media/files/2009-06-29-001_.pdf.

  18. V. N. Makarov and O. P. Shatalov, Gas-dynamical ozone generator, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, 29, No. 6, 139–148 (1994).

    Google Scholar 

  19. S. Javoy, V. Naudet, S. Abid, and C. E. Paillard, Elementary reaction kinetics studies of interest in H2 supersonic combustion chemistry, Exp. Therm. Fluid Sci., 27, No. 4, 371–377 (2003).

    Article  Google Scholar 

  20. M. G. Davis, W. K. McGregor, and A. A. Mason, OH chemiluminescent radiation from lean hydrogen–oxygen flames, J. Chem. Phys., 61, No. 4, 1352–1357 (1974).

    Article  Google Scholar 

  21. J. V. Michael, M. C. Su, J. W. Sutherland, J. J. Carroll, and A. F. Wagner, Rate constant for O2 + H + M → HO2 + M in seven bath gases, J. Phys. Chem. A, 106, No. 21, 5297–5313 (2002).

    Article  Google Scholar 

  22. J. V. Michael, J. W. Sutherland, L. B. Harding, and A. F. Wagner, Initiation in H2/O2: Rate constants for H2 + O2 → H + HO2 at high temperature, Proc. Combust. Inst., 28, No. 2, 1471–1478 (2000).

    Article  Google Scholar 

  23. D. L. Baulch, C. J. Cobos, R. A. Cox, et al., Summary table of evaluated kinetic data for combustion modeling: Supplement 1, Combust. Flame, 98, Nos. 1–2, 59–79 (1994).

    Article  Google Scholar 

  24. B. A. Ellingson, D. P. Theis, O. Tishchenko, J. Zheng, and D. G. Truhlar, Reactions of hydrogen atom with hydrogen peroxide, J. Phys. Chem. A, 111, No. 51, 13554–13566 (2007).

    Article  Google Scholar 

  25. A. Burcat and B. Ruscic, Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables. ANL-05/20 and TAE 960. Technion-IIT, Aerospace Engineering, and Argonne National Laboratory, Chemistry Division (2005).

  26. J. Troe and V. G. Ushakov, SACM/CT study of the dissociation/recombination dynamics of hydrogen peroxide on an ab initio potential energy surface, Phys. Chem. Chem. Phys., 10, No. 26, 3915–3924 (2008).

    Article  Google Scholar 

  27. D. Li and S. Hochgreb, Hydrogen autoignition at pressures above the second explosion limit (0.6–4.0 MPa), Int. J. Chem. Kinet., 30, No. 6, 385–406 (1998).

    Article  Google Scholar 

  28. R. A. Gorse and D. H. Volman, Photochemistry of the gaseous hydrogen peroxide–carbon monoxide system. II: Rate constants for hydroxyl radical reactions with hydrocarbons and for hydrogen atom reactions with hydrogen peroxide, J. Photochem., 3, No. 1, 115–122 (1974).

    Article  Google Scholar 

  29. R. R. Baldwin and R. W. Walker, Rate constants for hydrogen + oxygen system, and for H atoms and OH radicals + alkanes, J. Chem. Soc., Faraday Trans. 1, 75, No. 1, 140–154 (1979).

    Article  Google Scholar 

  30. Y. Tarchouna, M. Bahri, N. Jaidane, and Z. Ben Lakhdar, Kinetic study of the hydrogen abstraction reaction H2O2 + H → H2 + HO2 by ab initio and density functional theory calculations, J. Mol. Struct.: THEOCHEM, 758, No. 1, 53–60 (2006).

    Article  Google Scholar 

  31. Ch. Kappel, K. Luther, and J. Troe, Shock wave study of the unimolecular dissociation of H2O2 in its falloff range and of its secondary reactions, Phys. Chem. Chem. Phys., 4, No. 18, 4392–4398 (2002).

    Article  Google Scholar 

  32. Z. Hong, R. D. Cook, D. F. Davidson, and R. K. Hanson, A shock tube study of OH + H2O2 → H2O + HO2 and H2O2 + M → 2OH + M using laser absorption of H2O and OH, J. Phys. Chem. A, 114, No. 18, 5718–5727 (2010).

    Article  Google Scholar 

  33. E. Schultz and J. Shepherd, Validation of detailed reaction mechanisms for detonation simulation, Technical Report FM99-5, California Institute of Technology, Pasadena (2000).

  34. R. J. Kee, F. M. Rupley, E. Meeks, and J. A. Miller, Chemkin-III: A Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics, Technical Report SAND96-8218, Sandia National Laboratories, Livermore (1996).

  35. B. L. Wang, H. Oliver, and H. Grönig, Ignition of shock-heated H2–air–steam mixtures, Combust. Flame, 133, Nos. 1–2, 93–106 (2003).

    Article  Google Scholar 

  36. V. A. Pavlov and O. P. Shatalov, Measurement of the time of induction of hydrogen–oxygen mixtures behind the incident shock wave front, Kinet. Katal., 52, No. 2, 1–10 (2011).

    Article  Google Scholar 

  37. J. M. Hall and E. L. Petersen, An optimized kinetics model for OH chemiluminescence at high temperatures and atmospheric pressures, Int. J. Chem. Kinet., 38, No. 12, 714–724 (2006).

    Article  Google Scholar 

  38. J. Herzler and C. Naumann, Shock-tube study of the ignition of methane/ethane/hydrogen mixtures with hydrogen contents from 0% to 100% at different pressures, Proc. Combust. Inst., 32, No. 1, 213–220 (2009).

    Article  Google Scholar 

  39. A. D. Snyder, J. Robertson, D. L. Zanders, and G. B. Skinner, Shock tube studies of fuel–air ignition characteristics, Technical report AFAPL-TR-65-93, Air Force Aero-Propulsion Laboratory, Wright-Patterson (1965).

  40. M. W. Slack, Rate coefficient for H + O2 + M = HO2 + M evaluated from shock tube measurements of induction times, Combust. Flame, 28, No. 1, 241–249 (1977).

    Article  Google Scholar 

  41. K. A. Bhashkaran, M. C. Gupta, and T. H. Just, Shock tube study of the effect of unsymmetric dimethyl hydrazine on the ignition characteristics of hydrogen–air mixtures, Combust. Flame, 21, No. 1, 45–48 (1973).

    Article  Google Scholar 

  42. V. V. Martynenko, O. G. Penyazkov, K. A. Ragotner, and S. I. Shabunya, High-temperature of hydrogen and air at high pressures downstream of the reflected shock wave, Inzh.-Fiz. Zh., 77, No. 4, 100–107 (2004).

    Google Scholar 

  43. V. V. Voevodskii and R. I. Soloukhin, Concerning the mechanism and the limits of chain self-ignition of hydrogen with oxygen in shock waves, Dokl. Akad. Nauk SSSR, 154, No. 6, 1425–1428 (1964).

    Google Scholar 

  44. S. P. Medvedev, G. L. Agafonov, S. V. Khomik, and B. E. Gelfand, Ignition delay in hydrogen–air and syngas–air mixtures: Experimental data interpretation via flame propagation, Combust. Flame, 157, No. 7, 1436–1438 (2010).

    Article  Google Scholar 

  45. G. A. Pang, D. F. Davidson, and R. K. Hanson, Experimental study and modeling of shock tube ignition delay times for hydrogen–oxygen–argon mixtures at low temperatures, Proc. Combust. Inst., 32, No. 1, 181–188 (2009).

    Article  Google Scholar 

  46. F. L. Dryer and M. Chaos, Ignition of syngas/air and hydrogen/air mixtures at low temperatures and high pressures: Experimental data interpretation and kinetic modeling implications, Combust. Flame, 152, Nos. 1–2, 293–299 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ya. Gerasimov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 86, No. 5, pp. 929–936, September–October, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerasimov, G.Y., Shatalov, O.P. Kinetic mechanism of combustion of hydrogen–oxygen mixtures. J Eng Phys Thermophy 86, 987–995 (2013). https://doi.org/10.1007/s10891-013-0919-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-013-0919-7

Keywords

Navigation