Skip to main content
Log in

Simulation of the Dynamics of Wetting the Underlying Surface During Aviation Fire Extinguishing

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A mathematical model of wetting the underlying surface on discharge of a cooling agent into a fire site from the spillway device of the aircraft is presented. The model includes the equations of motion of polydisperse droplets in the gravity field, taking into account their fragmentation, evaporation, and wind force. The results of the conducted studies show that the length of the wetted strip is determined mainly by the length of the primary cloud and, to a lesser extent, by the initial droplet velocity and the distribution of wind velocity in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. Mell, S. L. Manzello, A. Maranghides, D. T. Butry, and R. G. Rehm, The wildland-urban interface fire problem — Current approaches and research needs, Int. J. Wildland Fire, 19, 238–251 (2010).

    Article  Google Scholar 

  2. A. Filkov, D. Kasymov, V. Zima, and O. Matvienko, Experimental investigation of surface litter ignition by bark firebrands, AIP Conf. Proc., 1698, Article ID 060004 (2016).

  3. O. V. Matvienko, D. P. Kasymov, A. I. Filkov, O. I. Daneyko, and D. A. Gorbatov, Simulation of fuel bed ignition by wildland firebrands, Int. J. Wildland Fire, 27, 550–561 (2018).

    Article  Google Scholar 

  4. A. M. Grishin, Physics of Forest Fires [in Russian], Izd. Tomsk. Univ., Tomsk (1994).

    Google Scholar 

  5. A. M. Grishin and O. V. Matvienko, Numerical investigation of the formation of a convective column and a fire tornado by forest fires, J. Eng. Phys. Thermophys., 87, No. 5, 1080–1093 (2014).

    Article  Google Scholar 

  6. A. M. Grishin, O. V. Matvienko, and Yu. A. Rudi, Mathematical simulation of the formation of heat tornadoes, J. Eng. Phys. Thermophys., 81, No. 5, 897–904 (2008).

    Article  Google Scholar 

  7. O. V. Matvienko and V. M. Ushakov, Numerical study of the spread of pollutant impurities in atmosphere, Vestn. Tomsk. Gos. Pedag. Univ., Issue 2 (30), 17–20 (2002).

  8. S. Suzuki, S. L. Manzello, M. Lage, and G. Laing, Firebrand generation data obtained from a full scale structure burn, Int. J. Wildland Fire, 21, No. 8, 961–968 (2012).

    Article  Google Scholar 

  9. A. M. Grishin, A. D. Gruzin, and V. G. Zverev, Mathematical theory of crown forest fires, in: Thermophysics of Forest Fires [in Russian], ITF SO AN SSSR, Novosibirsk (1984), pp. 38–75.

  10. D. Morvan and J. L. Dupuy, Modeling of fires spread through a forest fuel bed using a multiphase formulation, Combust. Flame, 127, 1981–1994 (2001).

    Article  Google Scholar 

  11. A. M. Grishin and V. A. Perminov, Ignition of forest areas under the action of a high-altitude source of radiant energy, Fiz. Goreniya Vzryva, 32, No. 5, 107–115 (1996).

    Google Scholar 

  12. A. I. Fil’kov, Determination of thermokinetic constants of the process of drying steppe combustible materials, Teplofiz. Aéromekh., 19, No. 6, 731–738 (2012).

  13. V. A. Perminov, Mathematical simulation of the occurrence and spread of crown forest fires in averaged formulation, Zh. Tekh. Fiz., 85, Issue 2, 24–30 (2015).

    Google Scholar 

  14. O. V. Matvienko, I. K. Zharova, E. A. Maslov, K. G. Perfil′eva, A. M. Bulavko, and V. A. Arkhipov, Modeling of dynamics of a liquid–drop refrigerant in aviation fire extinguishing, Vestn. Tomsk. Gos. Univ., Mat. Mekh., No. 62, 68–78 (2019).

  15. N. P. Kopylov, A. L. Chibisov, A. L. Dushkin, and E. A. Kudryavtsev, Study of the laws of suppressing model fire sites with finely dispersed water, Pozhar. Bezop., No. 4, 45–58 (2008).

  16. V. A. Perminov E. L. Loboda, and V. V. Reyno, Mathematical modeling of surface forest fires transition into crown forest fires, Proc. SPIE, 9292, 20th Int. Symp. on Atmospheric and Ocean Optics: Atmospheric Physics, 929225 (2014); DOI: https://doi.org/10.1117/12.2086618.

  17. A. M. Grishin, Mathematical Simulation of Forest Fires and New Ways to Fight Them [in Russian], Nauka, Novosibirsk (1992).

    Google Scholar 

  18. A. M. Grishin, O. V. Matvienko, and Yu. A. Rudi, Mathematical simulation of the influence of external circulation on the structure of fire tornadoes, Izv. Vyssh. Uchebn. Zaved., Fiz., 52, No. 2/2, 100–106 (2009).

  19. A. M. Grishin, O. V. Matvienko, and Yu. A. Rudi, Mathematical modeling of gas combustion in a twisted jet and of the formation of a fiery whirlwind, J. Eng. Phys. Thermophys., 82, No. 5, 906–913 (2009).

    Article  Google Scholar 

  20. A. O. Zhdanova, G. V. Kuznetsov, G. S. Nyashina, and I. S. Voitkov, Interaction of liquid aerosol with the combustion front of a forest combustible material under the conditions of countercurrent air flow, J. Eng. Phys. Thermophys., 92, No. 3, 687–693 (2019).

    Article  Google Scholar 

  21. D. V. Antonov, R. S. Volkov, A. O. Zhdanova, G. V. Kuznetsov, and P. A. Strizhak, Experimental study on the conditions for quenching forest combustible materials, J. Eng. Phys. Thermophys., 90, No. 3, 511–520 (2017).

    Article  Google Scholar 

  22. A. O. Zhdanova, G. V. Kuznetsov, and P. A. Strizhak, Numerical investigation of physicochemical processes occurring during water evaporation in the surface layer pores of a forest combustible material, J. Eng. Phys. Thermophys., 87, No. 4, 773–781 (2014).

    Article  Google Scholar 

  23. G. V. Kuznetsov and P. A. Strizhak, Heat and mass transfer in quenching the reaction of thermal decomposition of a forest combustible material with a group of water drops, J. Eng. Phys. Thermophys., 87, No. 3, 608–617 (2014).

    Article  Google Scholar 

  24. P. A. Strizhak, Influence of droplet distribution in a "water slug" on the temperature and concentration of combustion products in its wake, J. Eng. Phys. Thermophys., 86, No. 4, 895–904 (2013).

    Article  Google Scholar 

  25. D. V. Antonov, G. V. Kuznetsov, and P. A. Strizhak, Mathematical simulation of heat and mass transfer in the movement of liquid droplets in a gas medium under the conditions of their intense transformation, J. Eng. Phys. Thermophys., 93, No. 5, 1055–1076 (2020).

    Article  Google Scholar 

  26. V. A. Arkhipov, G. S. Ratanov, and V. F. Trofimov, Experimental study of the interaction of drops on collisions, Prikl. Mekh. Tekh. Fiz., No. 2, 73–77 (1978).

  27. V. A. Arkhipov, I. M. Vasenin, and V. F. Trofimov, On the stability of drops of an ideal liquid on collisions, Prikl. Mekh. Tekh. Fiz., No. 3, 95–98 (1983).

  28. O. V. Vysokomornaya, G. V. Kuznetsov, P. A. Strizhak, and N. E. Shlegel′, Influence of the concentration of water droplets in an aerosol cloud on the characteristics of their collisional interaction, J. Eng. Phys. Thermophys., 93, No. 2, 298–309 (2020).

    Article  Google Scholar 

  29. D. V. Antonov, O. V. Vysokomornaya, G. V. Kuznetsov, and M. V. Piskunov, Prognosis model for investigating the evaporation of water droplets, J. Eng. Phys. Thermophys., 92, No. 4, 907–915 (2019).

    Article  Google Scholar 

  30. Aviator Rules. Part 29. Airworthiness Regulations of Transport Category Rotorcraft. Interstate Aviation Committee, M. M. Gromov LII (1995).

  31. I. F. Kimstach, P. P. Devlishev, and N. M. Evtyushkin, Fire Tactics [in Russian], Stroiizdat, Moscow (1984).

    Google Scholar 

  32. I. V. Borisov, S. A. Parshentsev, and A. V. Tsipenko, Simulation of liquid drain from a VOP-3 container on external suspension of the helicopter with account for the flow from the main rotor, in: Proc. 7th Int. Conf. on Nonequilibrium Processes in Nozzles and Jets (NPNJ-2008), Izd. MAI, Moscow (2008), pp. 98–99.

  33. I. V. Borisov, S. A. Parshentsev, and A. V. Tsipenko, Accounting for the flow from the main rotor in simulation of helicopter flight with cargo on the external sling, Izv. YuFU, Tekh. Nauki, No. 1 (90), 171–177 (2009).

  34. V. P. Asovskii, Specific features of suppressing forest fires by helicopters using suspended spillways devices, Nauch. Vestn. MGTU GA, Aéromekh. Prochn., No. 138, 142–149 (2009).

  35. V. D. Zakhmatov, Promising modern developments of facilities for extinguishing forest fires, Pozharovzryvobezopasnost′, 20, No. 2, 47–49 (2011).

  36. M. A. Kudrov, Dynamics of the volume of liquid in a gas flow with account for the deformation of crushing and separation of drops, Nauch. Vestn. MGTU GA, Aéromekh. Prochn., No. 151, 163–168 (2010).

  37. E. E. Meshkov, V. O. Oreshkov, and G. M. Yambaev, Formation of a cloud of drops during the destruction of water core in free fall process, Pis′ma Zh. Tekh. Fiz., 37, No. 15, 7985 (2011).

  38. V. A. Arkhipov, I. K. Zharova, E. A. Kozlov, and A. S. Tkachenko, Forecasting environmental impacts of the spread of a cloud of toxic aerosols in the areas of falling of the spent stages of launched vehicles, Opt. Atm. Okeana, 28, No. 1, 89–93 (2015).

    Google Scholar 

  39. V. A. Arkhipov, E. A. Kozlov, S. S. Titov, A. S. Tkachenko, A. S. Usanina, and I. K. Zharova, Evolution of a liquid–drop aerosol cloud in the atmosphere, Arabian J. Geosci., No. 9, 114 (2016); DOI https://doi.org/10.1007/s12517-015-2161-4.

  40. Yu. V. Alekhanov, V. M. Bliznetsov, Yu. A. Vlasov, et al., Method for studying the interaction of dispersed water with flames, Fiz. Goreniya Vzryva, 42, No. 1, 57–64 (2006).

    Google Scholar 

  41. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Analysis of the eff ect exerted by the initial temperature of atomized water on the integral characteristics of its evaporation during motion through the zone of "hot" gases, J. Eng. Phys. Thermophys., 87, No. 2, 450–458 (2014).

    Article  Google Scholar 

  42. V. A. Arkhipov, S. A. Basalaev, A. I. Konovalenko, and K. G. Perfil′eva, Evaporation of a droplet cluster moving in a high-temperature gas medium, Pis'ma Zh. Tekh. Fiz., 46, No. 12, 40–42 (2020).

    Google Scholar 

  43. V. A. Arkhipov and A. S. Usanina, Gravity sedimentation of a set of solid spherical particles in the regime of a partially blown cloud, J. Eng. Phys. Thermophys., 90, No. 5, 1061–1098 (2017).

    Article  Google Scholar 

  44. V. E. Nakoryakov, G. V. Kuznetsov, and P. A. Strizhak, On the limiting transverse dimensions of a drop cloud on destruction of water mass in the process of faking from a great height, Dokl. Akad. Nauk, 475, No. 2, 145–149 (2017); DOI: https://doi.org/10.7868/S0869565217020062.

    Article  Google Scholar 

  45. V. E. Nakoryakov, G. V. Kuznetsov, and P. A. Strizhak, Deformation of a water plug during its free fall in air, Dokl. Akad. Nauk, Mekhanika, 467, No. 5, 537–542 (2016).

  46. V. A. Arkhipov, S. A. Basalaev, A. M. Bulavko, N. N. Zolotorev, K. G. Perfil′eva, and S. N. Polenchuk, An Installation for Studying the Dynamics of Destruction of a Spherical Macrovolume of a Liquid during Free Fall in Air, RF Patent application No. 2019119472, Claimed in 2019.

  47. V. A. Arkhipov, A. P. Berezikov, E. A. Kozlov, O. V. Matvienko, and U. M. Sheremet′eva, Modeling of propagation of an aerosol cloud during the release of liquid rocket fuels into the atmosphere, Opt. Atm. Okeana, 17, Nos. 5–6, 488–493 (2004).

    Google Scholar 

  48. M. E. Berlyand, Problems of Atmospheric Diff usion and Atmosphere Pollution [in Russian], Gidrometeoizdat, Leningrad (1975).

    Google Scholar 

  49. N. L. Byzova, E. K. Garger, and V. N. Ivanov, Experimental Studies of Atmospheric Diff usion and Calculations of Impurity Scattering [in Russian], Gidrometeoizdat, Leningrad (1991).

    Google Scholar 

  50. M. E. Berlyand, Forecast and Regulation of Atmosphere Pollution [in Russian], Gidrometeoizdat, Leningrad (1985).

    Google Scholar 

  51. B. Gebhart, Y. Jaluria, R. L. Mahajan, and B. Sammakia, Buoyancy-Induced Flows and Transport [Russian translation], Vol. 1, Mir, Moscow (1991).

    MATH  Google Scholar 

  52. P. S. Martynov and O. V. Matvienko, Mathematical modeling of contaminant transfer in the atmosphere, Proc. SPIE. The International Society for Optical Engineering, Vol. 123416A (2022); doi.org/https://doi.org/10.1117/12.2644838.

  53. C. Crowe, M. Sommerfeld, and Ya. Tsuji, Multiphase Flows with Droplets and Particles, CRC Press (1998).

    Google Scholar 

  54. O. V. Matvienko and M. V. Agafontseva, Numerical study of the process of degassing in hydrocyclones, Vestn. Tomsk. Gos. Univ., Mat. Mekh., No. 4 (20), 107–118 (2012).

  55. O. V. Matvienko, A. O. Andropova, and M. V. Agafontseva, Influence of the regime of flow of particle from a hydrocyclone on its separator characteristics, J. Eng. Phys. Thermophys., 87, No. 1, 24–37 (2014).

    Article  Google Scholar 

  56. V. A. Arkhipov, O. V. Matvienko, and V. F. Trofimov, Combustion of atomized liquid fuel in a swirling flow, Fiz. Goreniya Vzryva, 41, No. 2, 26–37 (2005).

    Google Scholar 

  57. A. G. Egorov, A. S. Tizilov, V. Ya. Niyazov, V. A. Arkhipov, and O. V. Matvienko, Study of the eff ect of swirling of cocurrent high-velocity air flow on the geometric parameters of the aluminum–air flame, Khim. Fiz., 33, No. 10, 58–61 (2014); DOI https://doi.org/10.7868/S0207401X14100045.

    Article  Google Scholar 

  58. V. A. Arkhipov, A. G. Egorov, S. V. Ivanin, E. A. Maslov, and O. V. Matvienko, Numerical simulation of aerodynamics and combustion of a gas suspension in a channel with a sudden expansion, Fiz. Goreniya Vzryva, 46, No. 6, 39–48 (2010).

    Google Scholar 

  59. M. Lopez de Bertodano, Two fluid models for two-phase turbulent jet, Nucl. Eng. Des., 179, Issue 11, 65–74 (1998).

    Article  Google Scholar 

  60. O. V. Matvienko, V. M. Ushakov, and E. V. Evtyushkin, Mathematical simulation of turbulent transport of dispersed phase in a turbulent flow, Vestn. Tomsk. Gos. Pedag. Univ., No. 6, 50–54 (2004).

  61. O. V. Matvienko and A. O. Andropova, Separation of nonspherical particles in a hydrocyclone, J. Eng. Phys. Thermophys., 91, No. 3, 712–730 (2018).

    Article  Google Scholar 

  62. O. V. Matvienko, A. V. Andriasyan, N. A. Mamadraimova, and A. O. Andropova, Study of motion of a particle in the form of an elongated ellipsoid of revolution in a swirling flow, Vestn. Tomsk. Gos. Univ., Mat. Mekh., No. 3 (41), 74–85 (2016).

  63. V. A. Arkhipov, S. A. Basalaev, A. M. Bulavko, N. N. Zolotorev, K. G. Perfil′eva, and S. N. Polenchuk, An Installation for Studying the Dynamics of Destruction of a Spherical Macrovolume of a Liquid during Free Fall in Air, RF Patent for invention No. 2705965, Published 11.12.2019. Byull. No. 32.

  64. V. A. Arkhipov, S. A. Basalaev, O. V. Matvienko, K. G. Perfil′eva, and A. S. Usanina, Generation and Evolution of Liquid–Drop Aerosol Cloud in the Field of Gravity [in Russian], Izd. Tomsk. Gos. Univ., Tomsk (2022).

    Google Scholar 

  65. A. M. Grishin, Mathematical Modeling of Forest Fires and New Methods of Fighting Them, Publishing House of the Tomsk State University, Tomsk (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Matvienko.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 96, No. 5, pp. 1242–1254, September–October, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matvienko, O.V., Arkhipov, V.A., Daneiko, O.I. et al. Simulation of the Dynamics of Wetting the Underlying Surface During Aviation Fire Extinguishing. J Eng Phys Thermophy 96, 1233–1245 (2023). https://doi.org/10.1007/s10891-023-02789-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-023-02789-8

Keywords

Navigation