Skip to main content
Log in

Mathematical Analysis of the Structure of Ultrahydrophobic Surfaces Obtained by Atmospheric Plasma Spraying of Zirconium Oxide. 1. Investigation of 2D Profiles

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A geometry analysis has been conducted of 2D profiles of slices of coating surfaces produced by air plasma spraying of zirconium oxide ZrO2 powder. Two scale levels of roughness of such surfaces have been identified: mini- and microlevels. Correlation was detected between the ratio of the degree of roughness at these levels to the equilibrium wetting angle of a water drop. The possibility of producing superhydrophobic coatings with wetting angles exceeding 160°C has been predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. P. Wang, L. Wang, H. P. Wu, J. Y. Pang, D. Gu, and S. Li, A lotus-leaf-like SiO2 superhydrophobic bamboo surface based on soft lithography, Colloids Surf. A, 520, 834–840 (2017).

    Article  Google Scholar 

  2. T. Darmanin and F. Guittard, Superhydrophobic and superoleophobic properties in nature, Mater. Today, 18, 273–285 (2015).

    Article  Google Scholar 

  3. V. A. Lapitskaya, T. A. Kuznetsova, A. A. Rogachev, G. B. Mel′nikova, S. A. Chizhik, and D. A. Kotov, Influence of the treatment of surfaces of materials in a dielectric-barrier-discharge plasma on their morphology and hydrophilic properties, J. Eng. Phys. Thermophys., 92, No. 5, 1349–1354 (2019).

    Article  Google Scholar 

  4. O. L. Voitik, K. I. Delendik, N. V. Kolyago, and L. Yu. Roshchin, Factors infl uencing the characteristics of wetting of parts of a vapor chamber, J. Eng. Phys. Thermophys., 93, No. 5, 1089–1095 (2020).

    Article  Google Scholar 

  5. S. V. Gnedenkov, L. B. Boinovich, S. L. Sinebryukhov, D. V. Mashtalyar, A. M. Emel′yanenko, and L. M. Egorkin, Method of Obtaining Superhydrophobic Protective Coatings Based on Titanium and Its Alloys, RF Patent 2441945, MPK51 C25D 11/26. Published 10.02.2012. Bull. No. 4.

  6. V. S. Rudnev, A. A. Vaganov-Vil′kins, T. P. Yarovaya, and P. M. Nedozorov, Method of Obtaining Composite Polymer-Oxide Coatings on Valve Metals and Their Alloys, RF Patent 2483144, MPK51 C25D, 1/02, C25D 15/00. Published 27.05.2013. Bull. No. 15.

  7. I. L. Radchenko and S. V. Kolosov, Composition of a Superhydrophobic Coating and the Method of Obtaining a Superhydrophobic Coating from It, RF Patent 2572974, MPK51 C09K 3/18, D82B 3/00. Published 20.01.2016. Bull. No. 2

  8. G. Azimi, R. Dhiman, H.-M. Kwon, A. T. Paxson, and K. K. Varanasi, Hydrophobicity of rare-earth oxide ceramics, Nature Mater., 72, No. 4, 315–320 (2013).

    Article  Google Scholar 

  9. K. Fukuda, J. Tokunaga, T. Nobunaga, and T. Nakatani, Frictional drag reduction with air lubricant over a super-waterrepellent surface, J. Marine Sci. Technol., 5, 123–130 (2000).

    Article  Google Scholar 

  10. A. Y. Vorobyev and C. Guo, Multifunctional surfaces produced by femtosecond laser pulses, J. Appl. Phys., 117, No. 3, 033103-1–033103-5 (2015); DOI: https://doi.org/10.1063/1.4905616.

  11. A. M. Emelyanenko, F. M. Shagieva, A. G. Domantovsky, and L. B. Boinovich, Nanosecond laser micro- and nanotexturing for the design of a superhydrophobic coating robust against long-term contact with water, cavitation, and abrasion, Appl. Surf. Sci., 332, 513–517 (2015).

    Article  Google Scholar 

  12. Y. Cai, T. W. Coyle, G. Azimi, and J. Mostaghimi, Superhydrophobic ceramic coatings by solution precursor plasma spray, Sci. Rep., 6, 24670-1–24670-7 (2016).

  13. P. Xu, T. W. Coyle, L. Pershin, and J. Mostaghimi, Fabrication of superhydrophobic ceramic coatings via solution precursor plasma spray under atmospheric and low-pressure conditions, J. Therm. Spray Technol., 28, 242–254 (2019).

    Article  Google Scholar 

  14. M. Bai, H. Kazi, X. Zhang, J. Liu, and T. Hussain, Robust hydrophobic surfaces from suspension HVOF thermal sprayed rare-earth oxide ceramics coatings, Article Sci. Rep., 8, No. 1, 6973-1–6973-8 (2018).

  15. D. W. Gong, J. Y. Long, P. X. Fan, D. F. Jiang, H. J. Zhang, and M. L. Zhong, Thermal stability of micro–nano structures and superhydrophobicity of polytetrafluoroethylene films formed by hot embossing via a picoseconds laser ablated template, Appl. Surf. Sci., 331, 437–443 (2015).

    Article  Google Scholar 

  16. M.-N. Liu, L. Wang, Y.-H. Yu, and A.-W. Li, Biomimetic construction of hierarchical structures via laser processing, Opt. Mater. Exp., 7, 2208 (2017).

    Article  Google Scholar 

  17. S. D. Bhagat and M. C. Gupta, Superhydrophobic microtextured polycarbonate surfaces, Surf. Coat. Technol., 270, 117–122 (2015).

    Article  Google Scholar 

  18. D. Li, H. Wang, D. Luo, Y. Liu, Z. Han, and L. Ren, Corrosion resistance controllable of biomimetic superhydrophobic microstructured magnesium alloy by controlled adhesion, Surf. Coat. Technol., 347, 173–180 (2018).

    Article  Google Scholar 

  19. A. F. Lasagni, S. Alamri, A. I. Aguilar-Morales, F. Rößler, B. Voisiat, and T. Kunze, Biomimetic surface structuring using laser based interferometric methods, Appl. Sci., 8, 1260 (2018); doi: https://doi.org/10.3390/app8081260.

    Article  Google Scholar 

  20. I. P. Gulyaev, V. I. Kuzmin, and O. B. Kovalev, Highly hydrophobic ceramic coatings produced by plasma spraying of powder materials, Thermophys. Aeromech., 27, No. 4, 585–594 (2020); doi: https://doi.org/10.1134/S0869864320040113.

    Article  Google Scholar 

  21. C. Rice, D. G. Duff , G. Wiessmieyer, M. Vötz, J. Kiilstra, D. Rühle, and B. Köhler, Ultraphobic Surface, RF Patent 2232648C2. Published 20.07.2004. Bull. No. 20.

  22. G. M. Fikhtengol′ts, A Course on Differential and Integral Calculus [in Russian], Vol. III, Fizmatgiz, Moscow (1960).

    Google Scholar 

  23. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series [in Russian], Nauka, Moscow (1981).

    MATH  Google Scholar 

  24. I. S. Berezin and N. P. Zhidkov, Methods of Computing [in Russian], Vol. 1, Fizmatgiz, Moscow (1959).

    MATH  Google Scholar 

  25. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Yankovskii.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 95, No. 6, pp. 1598–1607, November–December, 2021.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yankovskii, A.P., Gulyaev, I.P. & Kovalev, O.B. Mathematical Analysis of the Structure of Ultrahydrophobic Surfaces Obtained by Atmospheric Plasma Spraying of Zirconium Oxide. 1. Investigation of 2D Profiles. J Eng Phys Thermophy 95, 1570–1579 (2022). https://doi.org/10.1007/s10891-022-02625-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-022-02625-5

Keywords

Navigation