Skip to main content
Log in

Mathematical Definition of the Transition Boundaries Between Collision Regimes of Droplets

  • HEAT AND MASS TRANSFER IN DISPERSED AND POROUS MEDIA
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Experimental investigations have been performed in an effort to obtain a general approximate expression for the definition of the transition boundaries between the four collision regimes of droplets (their rebound, dispersion, coagulation, and fragmentation) depending on the key parameters of the interaction of the droplets (their Weber number, the dimensionless linear collision parameter of the droplets, and the ratio between their sizes). Water was used as a base liquid. An information background of values of the indicated parameters has been created for the purpose of their use in the prediction of the critical Weber number of droplets experiencing transitions between the four collision regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, Experimental investigation of atomized water droplet initial parameters influence on evaporation intensity in flaming combustion zone, Fire Saf. J., 70, 61–70 (2014).

    Article  Google Scholar 

  2. O. O. Taskiran and M. Ergeneman, Trajectory based droplet collision model for spray modeling, Fuel, 115, 896–900 (2014).

    Article  Google Scholar 

  3. J.-M. Tian and B. Chen, Dynamic behavior of non-evaporative droplet impact on a solid surface: Comparative study of R113, water, ethanol and acetone, Exp. Therm. Fluid Sci., 105, 153–164 (2019).

    Article  Google Scholar 

  4. D. R. Guildenbecher, C. López-Rivera, and P. E. Sojka, Secondary atomization, Exp. Fluids, 46, 371–402 (2009).

    Article  Google Scholar 

  5. A. G. Borisova, M. V. Piskunov, and P. A. Strizhak, Enhancing Boiling and Explosive Breakup of Evaporating Heterogeneous Water Drops in High Temperature Gaseous Media, Chem. Pet. Eng., 54, 21–25 (2018).

    Article  Google Scholar 

  6. D. Brian, M.-R. Ahmadian-Yazdi, C. Barratt, and M. Eslamian, Impact dynamics and deposition of perovskite droplets on PEDOT:PSS and TiO2 coated glass substrates, Exp. Therm. Fluid Sci., 105, 181–190 (2019).

    Article  Google Scholar 

  7. M. Orme, Experiments on droplet collisions, bounce, coalescence and disruption, Prog. Energy Combust. Sci., 23, 65–79 (1997).

    Article  Google Scholar 

  8. N. Ashgriz, Coalescence and separation in binary collisions of liquid drops, J. Fluid Mech., 221, 183–204 (1990).

    Article  Google Scholar 

  9. G. Finotello, R. F. Kooiman, J. T. Padding, K. A. Buist, A. Jongsma, F. Innings, and J. A. M. Kuipers, The dynamics of milk droplet-droplet collisions, Exp. Fluids, 59, p. 17 (2017).

    Article  Google Scholar 

  10. J. Qian and C. K. Law, Regimes of coalescence and separation in droplet collision, J. Fluid Mech., 331, 59–80 (1997).

    Article  Google Scholar 

  11. G. Khurana, N. Sahoo, and P. Dhar, Post-collision hydrodynamics of droplets on cylindrical bodies of variant convexity and wettability, Phys. Fluids, 31, 22008 (2019).

    Article  Google Scholar 

  12. A. Acevedo-Malavé and N. Loaiza, Fluid mechanics calculations in physics of droplets – IV: Head-on and off-center numerical collisions of unequal-size drops, J. Comput. Multiph. Flows, 8, 148–156 (2016).

    Article  MathSciNet  Google Scholar 

  13. G. Liang, Y. Guo, and Shen S, Dynamic behaviors during a single liquid drop impact on a static drop located on spheres, Exp. Therm. Fluid Sci., 53, 244–250 (2014).

    Article  Google Scholar 

  14. N. Yi, B. Huang, L. Dong, X. Quan, F. Hong, P. Tao, C. Song, W. Shang, and T. Deng, Temperature-induced coalescence of colliding binary droplets on superhydrophobic surface, Sci. Rep., 4, Article 4303 (2014).

    Article  Google Scholar 

  15. M. Ray, X. Yang, S.-C. Kong, L. Bravo, and C.-B. M. Kweon, High-fidelity simulation of drop collision and vapor–liquid equilibrium of van der Waals fl uids, Proc. Combust. Inst., 36, 2385–2392 (2017).

    Article  Google Scholar 

  16. V. A. Arkhipov, S. S. Bondarchuk, A. S. Usanina, and G. R. Shrager, Infl uence of the viscosity of a liquid on the dynamics of spreading of its drop, J. Eng. Phys. Thermophys., 88, No. 1, 42–51 (2015).

    Article  Google Scholar 

  17. H. Fujimoto, S. Yoshimoto, K. Takahashi, T. Hama, and H. Takuda, Deformation behavior of two droplets successively impinging obliquely on hot solid surface, Exp. Therm. Fluid Sci., 81, 136–146 (2017).

    Article  Google Scholar 

  18. V. N. Khmelev, A. V. Shalunov, R. N. Golykh, V. A. Nesterov, R. S. Dorovskikh, and A. V. Shalunov, Providing the efficiency and dispersion characteristics of aerosols in ultrasonic atomization, J. Eng. Phys. Thermophys., 90, No. 4, 831–844 (2017).

    Article  Google Scholar 

  19. N. D. Agafontseva and I. L. Paramonova, Estimation of the drop size in dispersed flow, J. Eng. Phys. Thermophys., 89, No. 4, 840–847 (2016).

    Article  Google Scholar 

  20. O. V. Vysokomornaya, N. E. Shlegel’, and P. A. Strizhak, Interaction of Water Droplets in Air Flow at Different Degrees of Flow Turbulence, J. Eng. Thermophys., 28, 1–13 (2019).

    Article  Google Scholar 

  21. W. Yang, Z. Luo, Q. Lai, and Z. Zou, Study on bubble coalescence and bouncing behaviors upon off-center collision in quiescent water, Exp. Therm. Fluid Sci., 104, 199–208 (2019).

    Article  Google Scholar 

  22. P. R. Brazier-Smith, S. G. Jennings, J. Latham, and B. J. Mason, The interaction of falling water drops: Coalescence, Proc. R. Soc. London. A: Math. Phys. Sci., 326, 393–408 (1972).

    Article  Google Scholar 

  23. J.-P. Estrade, H. Carentz, G. Lavergne, and Y. Biscos, Experimental investigation of dynamic binary collision of ethanol droplets —A model for droplet coalescence and bouncing, Int. J. Heat Fluid Flow, 20, 486–491 (1999).

    Article  Google Scholar 

  24. K. G. Krishnan and E. Loth, Effects of gas and droplet characteristics on drop–drop collision outcome regimes, Int. J. Multiphase Flow, 77, 171–186 (2015).

    Article  MathSciNet  Google Scholar 

  25. C. Hu, S. Xia, C. Li, and G. Wu, Three-dimensional numerical investigation and modeling of binary alumina droplet collisions, Int. J. Heat Mass Transf., 113, 569–588 (2017).

    Article  Google Scholar 

  26. G. Strotos, I. Malgarinos, N. Nikolopoulos, and M. Gavaises, Aerodynamic breakup of an n-decane droplet in a high temperature gas environment, Fuel, 185, 370–380 (2016).

    Article  Google Scholar 

  27. N. Ashgriz and P. Givi, Coalescence efficiencies of fuel droplets in binary collisions, Int. Commun. Heat Mass Transf., 16, 11–20 (1989).

    Article  Google Scholar 

  28. S. Gong, L. Han, and H. Luo, A novel multiscale theoretical model for droplet coalescence induced by turbulence in the framework of entire energy spectrum, Chem. Eng. Sci., 176, 377–399 (2018).

    Article  Google Scholar 

  29. K. V. Dobrego, V. F. Davydenko, and I. A. Koznacheev, Use of oriented spray nozzles to set the vapor–air flow rotary motion in the superspray space of the evaporative chimney-type tower, J. Eng. Phys. Thermophys., 89, No. 1, 157–161 (2016).

    Article  Google Scholar 

  30. D. O. Glushkov, P. A. Strizhak, and M. Y. Chernetskii, Organic coal–water fuel: Problems and advances (Review), Therm. Eng., 63, 707–717 (2016).

    Article  Google Scholar 

  31. S. K. Pawar, F. Henrikson, G. Finotello, J. T. Padding, N. G. Deen, A. Jongsma, F. Innings, and J. A. M. H. Kuipers, An experimental study of droplet–particle collisions, Powder Technol., 300, 157–163 (2016).

    Article  Google Scholar 

  32. A. Munnannur and R. D. Reitz, A new predictive model for fragmenting and non-fragmenting binary droplet collisions, Int. J. Multiphase Flow, 33, 873–896 (2007).

    Article  Google Scholar 

  33. R.-H. Chen, W.-C. Wang, and Y.-W. Chen, Like-drop collisions of biodiesel and emulsion diesel, Eur. J. Mech., B/Fluids, 60, 62–69 (2016).

    Article  MathSciNet  Google Scholar 

  34. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Water droplet deformation in gas stream: Impact of temperature difference between liquid and gas, Int. J. Heat Mass Transf., 85, 1–13 (2015).

    Article  Google Scholar 

  35. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Statistical analysis of consequences of collisions between two water droplets upon their motion in a high-temperature gas flow, Tech. Phys. Lett., 41, 840–843 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Kuznetsov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 5, pp. 1172–1184, September–October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, G.V., Solomatin, Y., Strizhak, P.A. et al. Mathematical Definition of the Transition Boundaries Between Collision Regimes of Droplets. J Eng Phys Thermophy 94, 1147–1159 (2021). https://doi.org/10.1007/s10891-021-02395-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02395-6

Keywords

Navigation