Skip to main content
Log in

Hybrid Method of Lattice Boltzmann Equations to Model Thermogravitational Flows

  • KINETIC THEORY OF TRANSFER PROCESSES
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A hybrid mathematical model has been developed in which the flow field of a viscous incompressible medium is calculated by the method of lattice Boltzmann equations using the Bhatnagar–Gross–Krook approximation and a two-dimensional nine-velocity scheme, and free convective heat transfer is calculated by the finite difference method. The formulated approach to solving thermogravitational-convection problems has been verified on numerical and experimental data of other researchers. From a comparative analysis, it has been established that the computational efficiency of the hybrid mathematical model is 50 times higher than that of the traditional approach, which is based on the finite difference method and transformed "vorticity–stream function" variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Sheikhi, M. Najafi , and V. Enjilela, Solving natural convection heat transfer in turbulent flow by extending the meshless local Petrov–Galerkin method, Eng. Anal. Boundary Elem., 93, 29–43 (2018).

    Article  MathSciNet  Google Scholar 

  2. O. Hireche, I. Ramadan, C. Weisman, H. Bailliet, Ya. Fraigneau, D. Baltean-Carlès, and V. Daru, Experimental and numerical investigation of natural convection flows in two horizontal thermoacoustic cavities, Int. J. Heat Mass Transf., 149, 1–17 (2020).

    Article  Google Scholar 

  3. C. Peng, N. Geneva, Z. Guo, and L.-P. Wang, Direct numerical simulation of turbulent pipe flow using the lattice Boltzmann method, J. Comput. Phys., 357, 16–42 (2018).

    Article  MathSciNet  Google Scholar 

  4. M. Sheikholeslami, Lattice Boltzmann method simulation for MHD non-Darcy nanofluid free convection, Physica B, 516, 55–71 (2017).

    Article  Google Scholar 

  5. Y. Zhao, B. Shi, Z. Chai, and L. Wang, Lattice Boltzmann simulation of melting in a cubical cavity with a local heat-flux source, Int. J. Heat Mass Transf., 127, 497–506 (2018).

    Article  Google Scholar 

  6. Y. Hu, Z. Zhang, H. Gao, and Y. He, Forced convective heat transfer of solar salt-based Al2O3 nanofluids using lattice Boltzmann method, Therm. Sci. Eng. Prog., 8, 2–9 (2018).

    Article  Google Scholar 

  7. C. Xie, J. Zhang, V. Bertola, and M. Wang, Lattice Boltzmann modeling for multiphase viscoplastic fluid flow, J. Non-Newtonian Fluid Mech., 234, 118–128 (2016).

    Article  MathSciNet  Google Scholar 

  8. P. Pavlo, G. Vahala, L. Vahala, and M. Soe, Linear stability analysis of thermo-lattice Boltzmann models, J. Comput. Phys., 139, 79–91 (1998).

    Article  MathSciNet  Google Scholar 

  9. A. Mezrhab, M. A. Moussaoui, M. Jami, H. Naji, and M. Bouzidi, Double MRT thermal lattice Boltzmann method for simulating convective flows, Phys. Lett. A, 374, 3499–3507 (2010).

    Article  Google Scholar 

  10. P. Lallemand and L.-S. Lou, Hybrid finite-difference thermal lattice Boltzmann equation, Int. J. Mod. Phys. B, 17, 41–47 (2003).

    Article  Google Scholar 

  11. S. Bettaibi, F. Kuznik, and E. Sediki, Hybrid lattice Boltzmann finite difference simulation of mixed convection flows in a lid-driven square cavity, Phys. Lett. A, 378, 2429–2435 (2014).

    Article  Google Scholar 

  12. S. Bettaibi, F. Kuznik, and E. Sediki, Hybrid LBM-MRT model coupled with finite difference method for doublediffusive mixed convection in rectangular enclosure with insulated moving lid, Physica A, 444, 311–326 (2016).

    Article  MathSciNet  Google Scholar 

  13. A. A. Mohamad, Lattice Boltzmann Method, Springer-Verlag, London (2011).

    Book  Google Scholar 

  14. G. V. Kuznetsov, T. A. Nagornova, and A. É. Ni, Computational modeling of conjugate heat transfer in a closed rectangular domain under the conditions of radiant heat supply to the horizontal and vertical surfaces of enclosure structures, J. Eng. Phys. Thermophys., 88, No. 1, 168–177 (2015).

    Article  Google Scholar 

  15. S. Jani, M. Mahmoodi, M. Amini, and J. E. Jam, Numerical investigation of natural convection heat transfer in a symmetrically cooled square cavity with a thin fin on its bottom wall, Therm. Sci., 18, 1119–1132 (2014).

    Article  Google Scholar 

  16. H. N. Dixit and V. Babu, Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method, Int. J. Heat Mass Transf., 49, 727–739 (2006).

    Article  Google Scholar 

  17. S. M. Bajorek and J. R. Lloyd, Experimental investigation of natural convection in partitioned enclosures, J. Heat Transf., 104, 527–532 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. É. Ni.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 2, pp. 431–438, March–April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, A.É. Hybrid Method of Lattice Boltzmann Equations to Model Thermogravitational Flows. J Eng Phys Thermophy 94, 415–422 (2021). https://doi.org/10.1007/s10891-021-02326-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02326-5

Keywords

Navigation