Skip to main content
Log in

Parametric Study of Natural Convection inside a Partitioned Cavity in the Presence of a Magnetic Field

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Steady laminar natural convection flow is studied numerically. The flow domain is a differentially heated square cavity with two partitions that is exposed to a constant horizontal magnetic field. A finite volume-based code is developed by the SIMPLER algorithm. A parametric study is carried out, using different values of the Rayleigh numbers, partition positions, partition heights, and the Hartmann numbers (from zero to 200). It is found that the Nusselt number is an increasing function of the Rayleigh number, but a decreasing function of the partition height and Hartmann number. The position of the partitions affects the streamlines and isotherms, but has a minimal effect on the mean Nusselt number. In addition, the results show that for low partition heights convective heat transfer in a cavity is significant, the braking effect of the Lorentz force is more pronounced, and the mean Nusselt number decreases considerably with increasing magnetic field strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Davis, Natural convection of air in a square cavity: A benchmark numerical solution, Int. J. Numer. Methods Fluids, 3, 249–263 (1983).

    Article  MATH  Google Scholar 

  2. T. Basak, S. Roy, and I. Pop, Heat flow analysis for natural convection within trapezoidal enclosures based on heatline concept, Int. J. Heat Mass Transf., 52, 2471–2483 (2009).

    Article  MATH  Google Scholar 

  3. R. S. Kaluri, R. Anandalakshmi, and T. Basak, Bejan's heatline analysis of natural convection in right-angled triangular enclosures: Effects of aspect ratio and thermal boundary conditions, Int. J. Therm. Sci., 49, 1576–1592 (2010).

    Article  Google Scholar 

  4. E. M. Alawadhi, Phase change process with free convection in a circular enclosure: Numerical simulations, Comput. Fluids, 33, 1335–1348 (2004).

    Article  MATH  Google Scholar 

  5. Yu. E. Karyakin, Yu. A. Sokovishin, and O. G. Martynenko, Transient natural convection in triangular enclosures, Int. J. Heat Mass Transf., 31, 1759–1766 (1988).

    Article  MATH  Google Scholar 

  6. Yu. E. Karyakin, Transient natural convection in prismatic enclosures of arbitrary cross section, Int. J. Heat Mass Transf., 32, 1095–1103 (1989).

    Article  MATH  Google Scholar 

  7. J. P. Garandet, J. P. Alboussiere, and T. Moreau, Buoyancy driven convection in a rectangular cavity with a transverse magnetic field, Int. J. Heat Mass Transf., 35, 741–748 (1992).

    Article  MATH  Google Scholar 

  8. N. Rudraiah, R. M. Barron, M. Venkatachalappa, and C. K. Subbaraya, Effect of a magnetic field on free convection in a rectangular cavity, Int. J. Eng. Sci., 33, 1075–1084 (1995).

    Article  MATH  Google Scholar 

  9. N. M. Al-Najem, K. M. Khanafer, and M. M. El-Refaee, Numerical study of laminar natural convection in tilted cavity with transverse magnetic field, Int. J. Numer. Methods Heat Fluid Flow, 8, 651–672 (1998).

    Article  MATH  Google Scholar 

  10. M. Pirmohammadi and M. Ghassemi, Effect of magnetic field on convection heat transfer inside a tilted square enclosure, Int. Commun. Heat Mass Transf., 36, 776–780 (2009).

    Article  Google Scholar 

  11. M. N. Kherief, K. Talbi, and F. Berrahil, Effects of inclination and magnetic field on natural convection flow induced by a vertical temperature, J. Appl. Fluid Mech., 5, 113–120 (2012).

  12. F. Selimefendigil, H. F. Oztop, and K. Al-Salem, Natural convection of ferrofluids in partially heated square enclosures, J. Magn. Magn. Mater., 372, 122–133 (2014).

    Article  Google Scholar 

  13. N. S. Bondareva and M. A. Sheremet, Influence of uniform magnetic field on laminar regimes of natural convection in an enclosure, Thermophys. Aeromech., 22, 203–216 (2015).

    Article  Google Scholar 

  14. A. Malvandi, M. R. Safaei, M. H. Kaffash, and D. D. Ganji, MHD mixed convection in a vertical annulus filled with Al2O3–water nanofluid considering nanoparticle migration, J. Magn. Magn. Mater., 382, 296–306 (2015).

    Article  Google Scholar 

  15. A. Malvandi, Film boiling of magnetic nanofluids (MNFs) over a vertical plate in presence of a uniform variabledirectional magnetic field, J. Magn. Magn. Mater., 406, 95–102 (2016).

    Article  Google Scholar 

  16. A. Malvandi and D. D. Ganji, Magnetic field effect on nanoparticles migration and heat transfer of water/alumina nanofluid in a channel, J. Magn. Magn. Mater., 362, 172–179 (2014).

    Article  Google Scholar 

  17. M. A. Sheremet, I. Pop, and N. C. Rosca, Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno's mathematical model, J. Taiwan Inst. Chem. Eng., 61, 211–222 (2016).

    Article  Google Scholar 

  18. R. Jelti, S. Acharya, and E. Zimmerman, Influence of baffle location on natural convection in partially divided enclosure, Numer. Heat Transf. A, 10, 521–536 (1986).

    Google Scholar 

  19. S. H. Tasnim and M. R. Collins, Suppressing natural convection in a differentially heated square cavity with an arc shaped baffle, Int. Commun. Heat Mass Transf., 32, 94–106 (2005).

    Article  Google Scholar 

  20. A. Ben-Nakhi and A. J. Chamkha, Conjugate natural convection in a square enclosure with inclined thin fin of arbitrary length, Int. J. Therm. Sci., 46, 467–478 (2007).

    Article  Google Scholar 

  21. N. Ben Cheikh, A. J. Chamkha, and B. Ben Beya, Effect of inclination on heat transfer and fluid flow in a finned enclosure fi lled with a dielectric liquid, Numer. Heat Transf. A, 56, 286–300 (2009).

    Article  Google Scholar 

  22. A. J. Chamkha, M. Mansour, and S. E. Ahmed, Double diffusive natural convection in inclined fi nned triangular porous enclosures in the presence of heat generation/absorption effects, Heat Mass Transf., 46, 757–768 (2010).

    Article  Google Scholar 

  23. V. A. F. Costa, Natural convection in partially divided square enclosures: Effects of thermal boundary conditions and thermal conductivity of the partitions, Int. J. Heat Mass Transf., 55, 7812–7822 (2012).

    Article  Google Scholar 

  24. H. Heidary, M. J. Kermani, and M. Pirmohammadi, Partition effect on thermomagnetic natural convection and entropy generation in inclined porous cavity, J. Appl. Fluid Mech., 19, 119–130 (2016).

    Google Scholar 

  25. S. A. M. Mehryan, M. Ghalambaz, M. A. Ismael, and A. J. Chamkha, Analysis of fluid–solid interaction in MHD natural convection in a square cavity equally partitioned by a vertical flexible membrane, J. Magn. Magn. Mater., 424, 161–173 (2017).

    Article  Google Scholar 

  26. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington DC (1980).

    MATH  Google Scholar 

  27. A. Al-Amiri, K. Khanafer, and I. Pop, Buoyancy-induced flow and heat transfer in a partially divided square enclosure, Int. J. Heat Mass Transf., 52, 3818–3828 (2009).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pirmohammadi.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 5, pp. 1300–1309, September–October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirmohammadi, M., Salehi-Shabestari, A. Parametric Study of Natural Convection inside a Partitioned Cavity in the Presence of a Magnetic Field. J Eng Phys Thermophy 93, 1255–1265 (2020). https://doi.org/10.1007/s10891-020-02229-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02229-x

Keywords

Navigation