Skip to main content
Log in

Formation of Monodisperse and Narrow Disperse Ensembles of Droplets of Aqueous Organic Solutions in the Vapor of Volatile Components

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The equilibrium state of solution droplets formed in the vapor of volatile components has been considered. The criterion of equilibrium of the solution droplets and the vapor of volatile organic compounds has been given, on whose basis the droplet size was estimated quantitatively as a function of the partial pressure of the components. In accordance with a thermodynamic description, the droplet size was unambiguously determined by the composition of a gas medium. The equilibrium state (radius and concentration) of droplets of ideal and real binary solutions has been compared at the same composition of the gas medium. It has been shown that the droplet size of the real solutions with a positive deviation from ideality exceeds the droplet size of the ideal solution, and the droplet size of the real solutions with a negative deviation from ideality is smaller than that of the ideal solution. The described regularities have been illustrated by microscopic photographs demonstrating the forming of an ensemble of secondary droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Ostwald, Particle coarsening: a process also called Ostwald ripening, Z. Phys. Chem., 22, No. 2, 289–330 (1897).

    Google Scholar 

  2. A. G. Amelin, Theoretical Foundations of Fogging in the Chemical Industry [in Russian], GNTIKhL, Moscow–Leningrad (1951).

    Google Scholar 

  3. N. Fuks, Evaporaion and Droplet Growth in a Gaseous Medium [in Russian], AN SSSR, Moscow (1958).

    Google Scholar 

  4. K. Mittal, Micellization, Solubilization, and Microemulsions, Plenum Press, New York (1977).

    Book  Google Scholar 

  5. J. W. Gibbs, Thermodynamic Works [Russian translation], GITTL, Moscow–Leningrad (1950).

    Google Scholar 

  6. J. Bogovic, S. Stopic, and B. Friedrich, Nanosized metallic oxide produced by ultrasonic spray pyrolysis method, Proc. EMC "Resources Efficiency in the Non-Ferrous Metals Industry-Optimization and Improvement," June 26–29, 2011, Düsseldorf, 3, 1053–1064 (2011).

  7. S. P. Fisenko, Yu. A. Khodyko, O. G. Penyazkov, and V. I. Saverchenko, Droplet evaporation on a substrate at the final stage of low pressure spray pyrolysis and the final morphology of nanoparticles, Int. J. Heat Mass Transf., 78, 599–603 (2014).

    Article  Google Scholar 

  8. S. S. Sazhin, A. E. Elwardany, P. A. Krutitskii, V. Deprédurand, and G. Castanet, Multi-component droplet heating and evaporation: Numerical simulation versus experimental data, Int. J. Therm. Sci., 50, No. 7, 1164–1180 (2011).

    Article  Google Scholar 

  9. S. Sazhin, Droplets and Sprays, Springer, London (2014).

    Book  Google Scholar 

  10. L. Z igan, I. Schmitz, A. Flügel, M. Wensing, and A. Leipertz, Structure of evaporating single- and multicomponent fuel sprays for 2nd generation gasoline direct injection, Fuel, 90, No. 1, 348–363 (2011).

    Article  Google Scholar 

  11. S. P. Fisenko and Yu. A. Khodyko, Numerical investigation of the low-pressure evaporative cooling of a substrate, J. Eng. Phys. Thermophys., 91, No. 1, 96–103 (2018).

    Article  Google Scholar 

  12. Y. S. Djikaev and E. Ruckenstein, Does the enthalpy of heterogeneous chemical reactions affect the formation of aqueous secondary organic aerosols?, J. Phys. Chem. Lett., 9, No. 18, 5311–5316 (2018).

    Article  Google Scholar 

  13. L. D. Yee, J. S. Craven, C. L. Loza, K. A. Schilling, N. L. Ng, M. R. Canagaratna, P. J. Ziemann, R. C. Flagan, and J. H. Seinfeld, Secondary organic aerosol formation from low-NOx photooxidation of dodecane: Evolution of multigeneration gas-phase chemistry and aerosol composition, J. Phys. Chem. A, 116, No. 24, 6211–6230 (2012).

    Article  Google Scholar 

  14. V. Perraud, E. A. Bruns, M. J. Ezell, S. N. Johnson, Y. Yu, M. L. Alexander, A. Zelenyuk, D. Imre, W. L. Chang, D. Dabdub, J. F. Pankow, and B. J. Finlayson-Pitts, Nonequilibrium atmospheric secondary organic aerosol formation and growth, Proc. Natl. Acad. Sci. USA, 109, No. 8, 2836–2841 (2012).

    Article  Google Scholar 

  15. Y. Iinuma, O. Böge, Y. Miao, B. Sierau, T. Gnauk, and H. Herrmann, Laboratory studies on secondary organic aerosol formation from terpenes, Faraday Disc., 130, 279–294 (2005).

    Article  Google Scholar 

  16. V. B. Fedoseev, A. V. Shishulin, E. K. Titaeva, and E. N. Fedoseeva, On the possibility of the formation of a NaCl–KCl solid-solution crystal from an aqueous solution at room temperature in small-volume systems, Phys. Solid State, 58, No. 10, 2095–2100 (2016).

    Article  Google Scholar 

  17. A. V. Shishulin and V. B. Fedoseev, On some peculiarities of stratification of liquid solutions within pores of fractal shape, J. Mol. Liq., 278, 363–367 (2019).

    Article  Google Scholar 

  18. V. B. Fedoseev and E. N. Fedoseeva, States of a supersaturated solution in limited-size systems, JETP Lett., 97, No. 7, 408–412 (2013).

    Article  Google Scholar 

  19. V. B. Fedoseev and M. V. Maksimov, Solution–crystal–solution oscillatory phase transitions in the KCl–NaCl–H2O system, JETP Lett., 101, No. 6, 390–393 (2015).

    Article  Google Scholar 

  20. V. B. Fedoseev, Oscillating phase transitions "solution–gas" and "solution–crystal" in droplets of solutions with a single crystallizable component, Nelin. Dinam., 13, No. 2, 195–206 (2017).

    Article  MATH  Google Scholar 

  21. D. S. Martyukova, A. E. Kuchma, and A. K. Shchekin, Dynamics of variations in size and composition of a binary droplet in a mixture of two condensing vapors and a passive gas under arbitrary initial conditions, Colloid J., 75, No. 5, 571–578 (2013).

    Article  Google Scholar 

  22. A. E. Kuchma, A. A. Mikheev, A. K. Shchekin, N. E. Esipova, and S. V. Itskov, Evaporation dynamics of a binary sessile droplet: Theory and comparison with experimental data on a droplet of a sulfuric-acid solution, Colloid J., 79, No. 6, 779–787 (2017).

    Article  Google Scholar 

  23. C. Wohlfarth, Surface Tension of Pure Liquids and Binary Liquid Mixtures, Vol. IV/24, Springer, Berlin, Heidelberg (2015).

    Google Scholar 

  24. S. Walas, Phase Equilibria in Chemical Engineering [Russian translation], Vol. 2, Mir, Moscow (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Fedoseev.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 93, No. 5, pp. 1154–1161, September–October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedoseev, V.B., Fedoseeva, E.N. Formation of Monodisperse and Narrow Disperse Ensembles of Droplets of Aqueous Organic Solutions in the Vapor of Volatile Components. J Eng Phys Thermophy 93, 1116–1122 (2020). https://doi.org/10.1007/s10891-020-02212-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-020-02212-6

Keywords

Navigation